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Continuous latent space models

Each vertex in a graph in this model is associated with a location X; € M where M is a well-behaved
metric space with metric p. Some examples of metric spaces used in continuous latent space models are: (1)
Euclidean space R¥, (2) hyperbolic spaces Hy, (3) other manifolds. In continuous latent space models, the
probability of an edge between vertex ¢ and j is given by

p(Aij = 1) = wy(p(Xi, X)),

where n is the number of vertices in the graph [5]. This dependence on n enables the model to vary with
respect to n, but we will omit it henceforth for conciseness. Typically, latent space models also assume that
w generally decreases for increasing p. In this model, the edges are independent conditioned on the latent
vertex locations X;. In many continuous latent space models, the latent vertex locations X; are assumed to
be distributed according to some distribution f on M.

Hoff, Raftery, and Handcock [I] presented a continuous latent space model where M is a two or three-
dimensional Euclidean space (R? or R?), p is the standard Euclidean distance metric, and

w(p(Xs, X;)) = logit™ (Bo — p(Xi, X;)),

where logit(p) = logﬁ and so logit '(q) = (1 4+ e~ 9)~'. They also have the latent vertex locations
distributed according to a standard Gaussian f = N(0, I).

Krioukov et al. [2, [, [3] explored a different model where M = Hy is the two-dimensional hyperbolic
plane, p is the hyperbolic distance metric, and

w(p(X, X)) = 4L AR <

0 if p(X;, X;) > c.
The latent vertex positions are distributed uniformly on a disc around the origin (uniform with respect to
the Euclidean metric). The link function w was selected to simplify the mathematics in their derivations,
but more sophisticated link functions can be used. The hyperbolic geometry naturally produces a “core-
periphery” structure, since vertices near the “edge” of the hyperbolic space will be distant from each other,
in terms of hyperbolic distance, and so they will tend not to connect with other points in the periphery.
Points near the center of the disc will be part of the “core”, and since they will tend to be closer to each other
in terms of hyperbolic distance, they will tend to connect with other points in the core. This core-periphery
structure is frequently encountered in routing networks on the internet. See figure [I|for a graphical depiction
of this space.

Isometry

Def 1. An isometry is an invertible map ¢ : M +— M that preserves distances. That is, for any x,y € M,
p(x,y) = p(d(x), o(y))-

Isometries form a group since: (i) the identity map is an isometry, (ii) every isometry has an inverse which is
also an isometry, and (iii) the composition of any two isometries is also an isometry (i.e., the group is closed



Figure 1: (left) A triangle drawn in the two-dimensional hyperbolic space Hy with three intersecting lines
Ly, Ly, L. Three additional lines Py, Ps, P3 intersect at the vertex C. (right) A tesselation of Hy with
equilateral triangles is shown in blue, and the dual tesselation with regular heptagons is shown in green. [3]

under composition). In this group, the identity is the identity map ¢(x) = x, and the group operation is
composition. For any isometries ¢, ¢2, ¢3, we have (¢1 o ¢2) o ¢35 = ¢1 o (¢2 0 ¢3) and so the composition
operation is associative. But it is not necessarily commutative, and so the group is not Abelian.

For Euclidean geometry, isometries can be represented as a composition of three elementary transfor-
mations: translations, rotations, and reflections. The group of Euclidean isometries has two subgroups: (1)
the set of isometries composed by translations and rotations, and (2) the set of isometries composed by
translations, rotations, and a single reflection. Thus, the isometry group has two connected components.

Two sets of points X = {X1,..., X} and Y = {Y1,...,Y,} are called isometric if there is an isometry
¢ such that X; = ¢(Y;) for all i. So if X and Y are isometric, then

p(X;, X;) = p(Y3,Y;) for all ¢, 5.
This implies that for any i, 7,
p(Aij = 11X) = w(p(Xi, X)) = w(p(Yi, Y;)) = p(Ai]Y).
Therefore, the distinction between X and Y is unidentified by the data.

Def 2. For a set of points X = {X1,...,X,}, we define the equivalence class [X] as the set of all point
sets Y € M™ such that for some isometry ¢, for alli=1,...,n, X; = ¢(Y3).

The best we can hope to recover from data is [X], not X, regardless of the size of n.

Figure 2: An example of an equivalence class of a set of three points under isometric transformations in R2.



The log-likelihood of a graph with adjacency matrix A under a continuous latent space model is

p(A|X) = Hp(Aij = 1|1X;, X;)*p(Ai; = 0| X3, X;)' 4,
I(X) £ logp(A|X) = ZAij logw(p(X;, X;)) + (1 — Ayj) log(1 — w(p(X5, X;))),
_ | . . - w(p(Xivxj))
= Zjl()g(l —w(p(Xi, X)) + Aij log 1= w(p(X:, X))’

- Z log(1 — w(p(Xi, X;))) + Aijlogit(w(p(X;, X;))).

We observe that the likelihood is unchanged if X is transformed by any isometry ¢. As such, latent vertex
positions are unidentified by data. We also observe that it is often times simpler to write parametric models
in terms of logit transforms.

Parametric inference with MCMC

With some prior f on the latent coordinates, there are a number ways of performing inference: (i) Pick
an initial set of coordinates for the latent vertex locations X;, (ii) the posterior density is proportional to
p(AIX) [T, f(X;), and (iii) use Markov chain Monte Carlo to sample from this posterior density. The
posterior is not necessarily invariant under isometries since the prior is not. The proposal step of MCMC is
often times modified to deal with isometry. This modification is to solve a Procrustes problem at each step:
find the isometry ¢ such that the distance between X and ¢(X) is minimized.
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Nonparametric inference

To make nonparametric inference feasible, we need to make additional assumptions:

1. For any two point sets X and Y, if p(X;, X;) = p(Y;,Y;) for all 4, j, then there exists an isometry ¢
such that X; = ¢(Y;) for all i.

2. The set of isometries has a finite number of connected components, which we call B. In Euclidean
space, for example, B = 2.

3. w is logit-bounded. That is, |logit(w,(p(X;i, X;)))| < v, and n/v, — oo as n — .
4. All derivatives of w exist and are finite.

Def 3. The expectation of the log-likelihood is (X ) 2 E[I(X)], where the expectation is taken with respect
to the distribution of graphs A.

Under these assumptions, the set of maxima of [ is exactly [X*] where X * are the true underlying coordinates.
Furthermore, for each X € M",



which follows from the bounded difference inequality. To obtain uniform convergence, we need to bound

XemMn

p( sup (1) —I(X)| > ) |

and so we need the effective size of the set of likelihood functions. It can be shown that the effective number
of likelihood functions is exponential in n and B. But since the absolute error in the likelihood is bounded
by the exponential of the square of n, and so the error in the likelihood will go to zero exponentially quickly.
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