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8.1 Agenda

1. Introduction to network comparisons

2. Discussion of the general case of network comparisons, its properties, and the “pooled estimate ”test

3. Discussion of network comparisons for continuous latent space models, including embedding, density
estimation, and the pooled estimate test.

8.2 Network Comparisons: The Idea

Given two observed graphs g1 and g2, could they have come from the same source? That is, did they come
from the same probability distribution over graphs?

Use cases

• networks from different populations. Examples: brain networks from normal versus diseased individ-
uals, social networks from different schools, organizations, gangs, academic disciplines

• treatment versus control. Examples: brain networks before and after learning, organizational networks
before and after treatment.

• variation across time or space

Uninteresting questions:

• Are g1 and g2 the same graph? The answer is almost always no.

• Are g1 and g2 isomorphic? Again, the answer is almost always no.

A better question is: How probable is it that graphs as different as g1 and g2 came from the same source?

Answering this question requires two things:

1. A way to say how different graphs g1 and g2 are.

2. A way to estimate probability distributions over graphs

Requirement 1 can be addressed using graph theory ideas. Requirement 2 is what this class has been building
towards.
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8.2.1 The Pooled Estimate Test

The pooled estimate test requires three ingredients

• A way of estimating a graph distribution from one (or more) graphs. Examples: stochastic block
models, continuous latent space models, graphons, ...

• A measure of distance between the estimates (not necessarily between the graph). Examples: distance
between the node densities in continuous latent space models, or L2 distance between graphon functions.

• The ability to simulate from estimated models.

Figure 8.1 is a diagram of the pooled estimate test. Here, θ̂i = T (gi) and θ̂p = T (g1, g2). Repeat the

simulation step many times to collect distribution of d(θ̂∗1 , θ̂
∗
2).
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Figure 8.1: A diagram for the pooled estimate test with θ̂i = T (gi) and θ̂p = T (g1, g2).

To get a p-value, see where the observed distance d(θ̂1, θ̂2) falls in the distribution from simulations, as seen
in Figure 8.2.
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Figure 8.2: An illustration of obtained a p-value in the pooled estimate test

For an analogy, consider the t-test for difference in means. There, the test statistic is the difference in means
divided by an estimate from pooling the samples. Instead of simulations, t-tables are used. This is because
the central limit theorem is used to shortcut simulation.
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To implement the pooled estimate test idea, we need to choose:

• a model class and estimator (the function T )

• distance measure for probability models (d)

• the number of simulations to run (should be as large as practical)

For model choice, the closer the models fit to the actual graph distributions, the more power the test will
have. There is trade-off between the expressive power (or range of the model) and its noise-sensitivity
(estimation error). This phenomenon is akin to the bias-variance tradeoff, or accuracy versus precision. As
often is the case in statistics, it is good to come up with good models ahead of time (before looking at the
data) to avoid overfitting.

The choice of distance measure can be straightforward for parametric models. One option is the distance
between the parameter vectors. A straightforward variant is to weight the parameters by some measure of
influence and/or precision of the estimator. This may be linked via the Fisher information and Cramer-Rao
lower bound.

Without parametric models, we need some measure of distance that reflects distances between graph dis-
tributions. For continuous latent space models, the estimate is given by an estimated density f̂ on a latent
space M . Thus, we can use any method we like to compare probability densities. For example, we could use

L1 = ||f̂1 − f̂2|| =
∫
M

|f̂1(x)− f̂2(x)|dx or L2 =

(∫
M

(f̂1(x)− f̂2(x))2dx

)1/2

.

Another option would be the symmetric Kullback-Liebler divergence 1/2(KL(f2, f1)−KL(f1, f2)).

For graphon functions, w1 : [0, 1]2 → [0, 1] and w2 : [0, 1]2 → [0, 1], it would be natural to try(∫
|w1(u, v)− w2(u, v)|pdudv

)
1/p for p = 1, 2, . . .

However, the fact that graphon functions are not unique (the graphs are invariant under measure-preserving
maps) means more care must be taken.

One option is to put w1 and w2 in “canonical form”. For example, order by increasing expected degree,

given by E(D|Ui = u) = (n− 1)
∫ 1

0
w(u, v)dv.

An alternative is to find

infφ

(∫
|w1(u, v)− w2(φ(u), φ(v))|pdudv

)1/p

where φ is a measure preserving map. Finally, if g1 and g2 share the same node set, try∑
(i,j)

|p̂(1)ij − p̂
(2)
ij |.

8.3 Continuous Latent Space Models

Recap: each node i has a latent position xi ∈M .

P(Aij = 1|Xi, Xj) = w(ρ(Xi, Xj))
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with ρ a metric on M and all Aij independent given X’s. From last time, we know that if M,ρ,w are well
behaved, the MLE x̂1:n →p [x∗1:n] where x∗ is the true coordinates and [x] is the isometry class of x.

If the ML embedding is consistent with xi ∼ f independently, and f̂ is consistent for iid data and continuous
in the data points, then f̂(x̂1:n)→p [f ] by the continuous mapping principle (the Mann-Whitney Theorem).

To implement a pooled estimate test:

1. Embed g1 in M to get X̂.

2. Embed g2 in M to get Ŷ .

3. Estimate densities f̂1 and f̂2 from X̂ and Ŷ , respectively.

4. Estimate pooled density f̂ from X̂UŶ .

5. Draw two samples of size v(g1) and v(g2) from f̂ .

6. Generate G∗
1 and G∗

2 from these samples.

7. Re-embed to get X̂∗, Ŷ ∗ and f̂∗1 , f̂
∗
2 .

8. Calculate d(f̂∗1 , f̂
∗
2 ).

9. Repeat steps 5 through 8 many times and compare d(f̂1, f̂2) to this distance.

If (M,ρ) is an ordinary Euclidean space, a kernel density estimate (KDE) is consistent, nonparametric, and
minimax.

f̂(x) =
1

nh

n∑
i=1

K(
x− xi
h

) where K(u) is a probability density.

= Kh ∗
1

n

n∑
i=1

δ(x− xi) where ∗ is convolution

This generalizes to other kinds of metric space: convolution of basic kernel density with empirical distribution
of observations. (Asta 2015)

In Euclid: convolution = multiply Fourier transforms.
Non-Euclid: convolution = multiply Helgason transforms.


