
Homework 1

36-465/665, Spring 2021

Due at 6 pm on Thursday, 11 February 2021 (Pittsburgh)

In problems 1–3, we are trying to predict a binary variable Y , which for definiteness we can say is either 0 or
1. Our prediction will be Ŷ , also 0 or 1. The prediction is based on an input variable (“feature”) X, and
Pr (Y = 1|X = x) = p(x) is the probability that Y is 1 when X = x.

1. Binary classification with 0-1 loss In this problem, we incur a loss of 0 if Y = Ŷ , and a loss of 1 if
Y 6= Ŷ . Say that Ŷ = 1 when p(x) ≥ 0.5 and Ŷ = 0 when p(x) < 0.5.
a. (5) Show that the probability of mis-classifying is p(x) if p(x) < 0.5, and 1− p(x) if p(x) > 0.5.
b. (4) Show that the probability of mis-classifying can be written as min (p(x), 1− p(x)) for all x.
c. (3) Explain why we can set Ŷ = 0 or Ŷ = 1 when p(x) = 0.5 without changing the probability of

error.
d. (5) Show that the probability of mis-classifiying can be written as 1

2 −
∣∣p(x)− 1

2
∣∣ for all x.

e. (5) Find an expression for the risk of the optimal classifier.
f. (5) When will the risk be zero? Explain.

2. Decision boundaries for binary classification In this problem, assume that we are trying to predict
a binary variable Y , which for definiteness can be either 0 or 1. We have a 2× 2 matrix Lij which tells
us the loss we incur when we predict j but the reality is i.
a. (5) Write down an expression for the expected loss of setting Ŷ = 0, as a function of p(x) and the

elements of the L matrix. Explain your reasoning.
b. (5) Write down an expression for the expected loss of setting Ŷ = 1, similarly to (a).
c. (5) Give a criterion for when it is better to set Ŷ = 0 and when it is better to set Ŷ = 1. You

should be able to manipulate your answer to be of the form “Predict Ŷ = 1 when p(x) >”
some expression involving the elements of the L matrix.

d. (5) Explain, in words, what your answer in (c) says about when you should be indifferent between
saying Ŷ = 0 and Ŷ = 1.

e. (5) Show that when L00 = L11 = 0 and L01 = L10 > 0, the boundary from (d) is precisely at
p(x) = 1/2. Explain this in words.

3. Randomized decisions We’re in the same setting as problem 2, but now, instead of deterministically
setting Ŷ = 0 or Ŷ = 1, we randomly set Ŷ = 1 with probability q(x), which is not necessarily equal to
the probability p(x) that Y = 1.
a. (5) Find an expression for the expected loss at a given x. It should involve q(x), p(x), and the

elements of the L matrix.
b. (5) Hold x fixed, and find an expression for the value of q(x) that will minimize the expected loss.

Your answer should involve p(x) and the elements of the loss matrix.
c. (5) Does the possibility of a randomized rule lead to any improvements over what we can do with

deterministic rules?
4. Log loss and maximum likelihood In this problem, f is the true (but usually unknown) probability

density function of a random variable X, and g is a PDF we’re considering as a possible guess about x.
Suppose that if we say the probability density function is g and the actual value we see is x, we include
the loss − log g(x). This is called the “logarithmic loss function” or just the “log loss”.
a. (5) What sorts of predictions will get large losses and which ones will get small losses? Does this

seem reasonable?
b. (4) Explain why the risk of g is −

∫
f(x) log g(x)dx.

c. (4) It can be shown that
∫

w(t) log tdt ≤ log
(∫

tw(t)dt
)
for any probability distribution w. (This
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is a special case of a theorem about convex functions called “Jensen’s inequality”; you don’t
have to show it.) In fact,

∫
w(t) log tdt = log

∫
tw(t)dt if, and only if, w puts probability

1 on one particular value of t, and probability 0 on all others. Use this to show that∫
f(x) log g(x)

f(x) dx ≤ 0. Explain how g(x) must relate to f(x) for the integral to be 0. Hint:
Probability densities integrate to 1.

d. (5) Using (c), show that −
∫

f(x) log f(x)dx < −
∫

f(x) log g(x)dx unless f(x) = g(x) everywhere.
e. (5) Suppose we see independent data points x1, . . . xn, all drawn from the same distribution.

Explain why the likelihood of the pdf g is
∏n

i=1 g(xi). How is this related to the log loss of g?
How is minimizing the log loss related to maximizing the likelihood? What does (d) tell you
about maximum likelihood estimation?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All quantitative and mathematical
claims are supported by appropriate derivations, included in the text, or calculations in code. Numerical
results are reported to appropriate precision.
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