
Homework 2

36-465/665, Spring 2021

Due at 6 pm on Thursday, 18 February 2021

1. The “sandwich variance” for linear regression In this problem, and this problem only, suppose that our
data consists of IID pairs (Xi, Yi), and that both Xi and Yi are centered, so E [Xi] = E [Yi] = 0. We
want to estimate a linear regression of Y on X by least squares, so we would ideally like to find the b∗
which minimizes r(b) = E

[
(Y − bX)2]. We do not assume that the true relationship between Y and X

is linear.
a. (5) It is known (e.g., from Lecture 2) that the optimal b∗ = Cov [X,Y ] /Var [X]. Use this to show

that E [Y − b∗X] = 0 and that Cov [Y − b∗X,X] = 0.
b. (5) Show that r(b) = Var [Y ] + b2Var [X]− 2bCov [Y,X].
c. (5) Show that the second derivative of r(b) (with respect to b) is r′′(b) = 2Var [X].
d. (5) With finite data, we approximate r(b) by r̂(b) = n−1∑n

i=1 (Yi − bXi)2. Define the residual
for the ith observation as Di(b) ≡ Yi − bXi. Show that the first derivative of r̂(b) is r̂′(b) =
−2
n

∑n
i=1 Di(b)Xi.

e.(10) Explain why it’s reasonable, under our assumptions, to estimate Var [r̂′(b∗)] by

Ĵn ≡
4
n2

n∑
i=1

D2
i (b̂)X2

i

“Reasonable” here means you don’t need to give a formal proof, but you should give reasons
to explain why Ĵn is connected to Var [r̂′(b∗)]. Hints: (i) What’re the expectations of the
summands in the definition of Ĵn? (ii) Use sub-problem (a).

f. (8) Find an expression for the standard error of b̂, the minizer of r̂(b). Your answer should involve
both Ĵn and the sample variance of X (and possibly other things). Hints: (1) Lectures 3
and 4; (2) remember that the standard error of an estimator is defined as the square root of
its sampling variance; “the standard error of the mean”, σ/

√
n, is the standard error of one

particular estimator (which?), but every estimator has its own standard error.
g. (5) Now assume that Y = b∗X + ε where ε is IID with mean 0 and variance σ2. (That is, the

usual linear-model assumptions hold.) Show that your expression for the standard error from
the last sub-problem will converge on σ/

√
nVar [X] for large n.

Note: in this problem we do not assume that the linear regression model is right, or, if the relationship
between Y and X is linear, assume that the noise around the regression line has constant variance. What
we’ve just done, in the next-to-last sub-problem, is the calculation of a “robust standard error” (because it’s
still valid if the usual assumptions are broken). In particular, this is a “heteroskedasticity-consistent” (HC)
robust standard error (because it works even if the noise is “heteroskedastic”, i.e., does not have constant
variance).

2. Propagation of error and uncertainty in predictions. The following technique, called “propagation of
error”, “the delta method”, or “propagation of uncertainty”, is often useful in simplifying complicated
calculations about the variances of functions.

a. (5) Suppose that M = f(T ), where the random variable T has expectation µ$ and variance σ2.
Use a Taylor expansion of f to explain why Var [M ] ≈ (f ′(µ))2

σ2 when σ2 is small.

b. (6) Now suppose thatM = f(T1, T2, . . . Td), where Ti has expectation µi and variance σ2
i . Assume
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the Ti are uncorrelated with each other. Assuming all the σ2
i are small, explain why

Var [M ] ≈
d∑

i=1

(
∂f

∂ti
(µ1, . . . µd)

)2
σ2

i

c. (6) Suppose the situation is as in (b), but that Cov [Ti, Tj ] = ρij , not necessarily equal to 0.
Explain why

Var [M ] ≈
d∑

i=1

(
∂f

∂ti
(µ1, . . . µd)

)2
σ2

i + 2
d−1∑
i=1

d∑
j=i+1

(
∂f

∂xi
(µ1, . . . µd)

)(
∂f

∂tj
(µ1, . . . µd)

)
ρij

d. (3) Define Σ as the matrix with diagonal entries σ2
1 , . . . σ

2
d, and off-diagonal entries ρij . Is

Var [M ] ≈ ∇M(µ1, . . . µd) · (Σ∇M(µ1, . . . µd)) ?

If so, explain why; if not, explain why not, and give a correct expression if possible.

e. (6) Now suppose that our model / strategy / prediction rule makes the prediction s(x; θ1, . . . θd)
on information x when the parameters are θ1, . . . θd. We have a variance-covariance matrix
c for our estimated parameters θ̂1, . . . θ̂d (perhaps from the “usual asymptotics”, or from
something like problem 1, or perhaps from the Oracle). Explain, in words, how we could use
c, and the earlier parts of this problem, to get a variance for our prediction at X = x. What,
if anything, would we need to calculate, beyond c?

3. ERM and the 0-1 loss. In this problem, assume that we’re doing classification with the 0-1 loss, and that
ourX variable is a two-dimensional set of coordinates on a plane. Our available rules/strategies/classifiers
are all of the form “say 1 if a · x ≥ b and say 0 otherwise”, where a is a vector and b is a scalar. (These
are called “linear classifiers”.) Finally, abbreviate P (Y = 1|X = x) as p(x), and suppose that p(x) is a
smooth function of x.

a. (5) Explain why the true risk is a smooth function of a and b.

b. (5) Explain why the empirical risk is not a smooth function of a and b. In particular, explain why
the empirical risk is a discontinuous function of the parameters. (You may find it helps to
draw a picture.)

c. (5) Explain why applying “the usual asymptotics” (from lectures 3 and 4) to the 0-1 loss is
dubious.

d. (5) Would your conclusion in (c) be altered if instead of linear classifiers, we used circles of varying
radii and centers?

4. (1) Roughly how much time did you spend on this assignment?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All quantitative and mathematical
claims are supported by appropriate derivations, included in the text, or calculations in code. Numerical
results are reported to appropriate precision.
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