
Homework 3

36-465/665, Spring 2021

Due at 6 pm on Thursday, 25 February 2021

1. Optimism and the “covariance penalty” If we use data (X1, Y1), . . . (Xn, Yn) to learn a predictive model
µ̂, the “optimism” of our method is defined as how much worse that model would do on new data
with the same values of X but independent Y s. That is, for each i, Y ′i has the same distribution as Yi
(conditional on Xi), but is independent of Yi, and the optimism (for regression) is

E

[
1
n

n∑
i=1

(Y ′i − µ̂(Xi))2

]
− E

[
1
n

n∑
i=1

(Yi − µ̂(Xi))2

]
(1)

In this problem and the next, we’ll see how to build a simple, unbiased estimator of the optimism.

a. (5) Show that the optimism (as defined above) is equal to

1
n

n∑
i=1

(
E
[
(Y ′i − µ̂(Xi))2]− E

[
(Yi − µ̂(Xi))2]) (2)

b. (5) Show that E [Y ′i − µ̂(Xi)] = E [Yi − µ̂(Xi)].

c. (5) Show that the optimism is equal to

1
n

n∑
i=1

(Var [Y ′i − µ̂(Xi)]−Var [Yi − µ̂(Xi)]) (3)

d. (5) Show that
Var [Yi − µ̂(Xi)] = Var [Yi] + Var [µ̂(Xi)]− 2Cov [Yi, µ̂(Xi)] (4)

e. (5) Show that
Var [Y ′i − µ̂(Xi)] = Var [Yi] + Var [µ̂(Xi)] (5)

f. (5) Show that the optimism equals
2
n

n∑
i=1

Cov [Yi, µ̂(Xi)] (6)

g. (5) Explain why
1
n

n∑
i=1

(Yi − µ̂(Xi))2 + 2
n

n∑
i=1

Cov [Yi, µ̂(Xi)] (7)

is an unbiased estimate of

E

[
1
n

n∑
i=1

(Y ′i − µ̂(Xi))2

]
(8)

2. Filling in a step (5) In lecture 5, slide 20, it’s asserted that “the deviating-below-expectation bound
matches exactly” the bound on the probability of deviating above expectation by ε. Show that this is
true.
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http://www.stat.cmu.edu/~cshalizi/sml/21/lectures/05/lecture-05.html#(20)


3. Converting deviation bounds into high-probability bounds and sample-size bounds

a. (4) In lecture 5, we express the Chebyshev inequality for the sample mean as P
(
|Xn − E [X] | ≥ ε

)
≤

Var [X] /nε2. That is, we start with the size of the deviation ε, and give a bound on the
probability of a deviation of that size or larger. Use this to give a formula, say g(n, α),
where I can state my desired confidence level α ∈ (0, 1), and you can guarantee that
P
(
|Xn − E [X] | ≤ g(n, α)

)
≥ 1− α.

b. (4) Continuing with the previous problem, find the minimum sample size N(ε, α) which guarantees
that if n ≥ N(ε, α), then P

(
|Xn − E [X] | ≥ ε

)
≤ α.

c. (4) Repeat (a), but start from the Chernoff bound on sub-Gaussian random variables (given in
Lecture 5).

d. (4) Repeat (b), but again start from the Chernoff bound on sub-Gaussian random variables.

4. The random projection trick (a.k.a. the “Johnson-Lindenstrauss lemma” or “Johnson-Lindenstrauss
theorem”) Suppose we have n different p-dimensional vectors x1, . . . xn. A function which maps these
vectors to new points, in Rp or any other space, is called an isometry if it preserves distances1, so
‖F (xi)− F (xj)‖ = ‖xi − xj‖ for all i, j. A function is a ε-approximate isometry if2

(1− ε)‖xi − xj‖2 ≤ ‖F (xi)− F (xj)‖2 ≤ (1 + ε)‖xi − xj‖2 (9)

Specifically, we will consider linear functions which map the vectors into Rq, for q < p, and show that
random linear projections are approximate isometries with high probability.

a. (5) Create a random p-dimensional vector V , where the entries are all independent standard
Gaussians, so Vi ∼ N (0, 1). Show that, for any non-random p-dimensional vector x (other
than 0), V · x/‖x‖ ∼ N (0, 1).

b. (5) Create random vectors V1, . . . Vq as in (a), and stack them as the rows in a q × p matrix V.
Using (a), show that

Z ≡ ‖Vx‖
2

‖x‖2 ∼ χ
2
q (10)

c. (4) The moment generating function of a χ2
q distribution is M(t) = (1− 2t)−q/2 for t < 1/2, and

undefined for t > 1/2. Use this to show that

P (|Z − q| ≥ ε) ≤ 2 exp
(
−ε2/8q

)
(11)

(If you get stuck here, go ahead to do the rest of this question using this result, and come
back to this part when you have time.)

d. (5) Define F (x) = q−1/2Vx. Use (c) to show that

P
(
‖F (x)‖2

‖x‖2 6∈ [1− ε, 1 + ε]
)
≤ 2 exp

(
−qε2/8

)
(12)

e. (5) Use (d) to show that

P
(
for some i, j, ‖F (xi − xj)‖2

‖xi − xj‖2 6∈ [1− ε, 1 + ε]
)
≤ n(n− 1) exp

(
−qε2/8

)
(13)

Hints: for any two events A and B, P (A ∪B) ≤ P (A) + P (B) (“the union bound”); how
many pairs i, j can we form from n points?

1Throughout this problem, and this course, ‖ · ‖ indicates the ordinsry Euclidean length (or “norm”) of a vector, so
‖v‖ =

√∑p

i=1 v2
i in Cartesian coordinates.

2You might think it more natural to state this in terms of the distances than of the squared distances, but this definition is
easier to work with than the other one would be, as we’ll see.
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f. (5) Use (e) to show that with probability at least 1 − α, the F we have built is an ε-isometry,
provided q ≥ 16

ε2 logn/α. Hint: try upper-bounded the formula in (e) by something easier to
invert.

g. (4) Suppose we have 109 data points, each represented as ten-thousand-dimensional vectors. (For
instance each could be a 100× 100 pixel image.) How many random vectors would we need
to use, to have 99% confidence that the resulting random projection was a 0.01-approximate
isometry? What would change if each data point was had a million dimensions instead? (The
answers will help explain why this technique is very widely used in industry for dimension
reduction.)

5. (1) How much time did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All quantitative and mathematical
claims are supported by appropriate derivations, included in the text, or calculations in code. Numerical
results are reported to appropriate precision.
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