
Homework 5

36-465/665, Spring 2021

Due at 6 pm on Thursday, 11 March 2021

Agenda: Working with risk bounds; actually calculating a data-dependent risk bound for a
practical classifier.

1. Fully operational Rademacher risk bounds Lecture 8 assumed that our loss function ` is bounded
between 0 and m, and uses the bounded-difference (McDiarmid) inequality to show that

P (r(ŝ) ≥ r̂(ŝ) + ε) ≤ exp
(
−2n(ε− E [Γn])2/m2) (1)

a. (8) Lecture 8 went on to claim that we can pick any α ∈ (0, 1), and that then

P

(
r(ŝ) ≥ r̂(ŝ) + E [Γn] +m

√
log 1/α

2n

)
≤ α (2)

Show that this follows from equation 1.

b. (6) Explain why Q1a and the fact that E [Γn] ≤ 2R implies that, for any α ∈ (0, 1),

P

(
r(ŝ) ≥ r̂(ŝ) + 2R+m

√
log 1/α

2n

)
≤ α (3)

c. (5) Lecture 8 showed that, for any ε > 0,

P
(
Rn ≥ R̂n + ε

)
≤ exp

(
−2nε2/m2) (4)

Use this to show that for any β ∈ (0, 1),

P

(
Rn ≥ R̂n +m

√
log (1/β)

2n

)
≤ β (5)

d.(10) Use Q1c and Q1b to show that, for any δ ∈ (0, 1),

P

(
r(ŝ) ≥ r̂(ŝ) + 2R̂n + 3m

√
log 2/δ

2n

)
≤ δ (6)

Hint: Consider α = β = δ/2 in the previous parts. (Why δ/2?)

e. (8) Now imagine that we get our data Z1, . . . Zn, and we then generate a single random sequence
σ1, . . . σn, by tossing n coins and setting σ = +1 for heads and = −1 for tails. We can then
calculate

ˆ̂Rn ≡ max
f∈F

∣∣∣∣∣ 1n
n∑

i=1
σif(Zi)

∣∣∣∣∣ (7)

Show that, for any ε > 0,

P
(
R̂n ≥ ˆ̂Rn + ε

)
≤ exp

(
−n ε2

2m2

)
(8)
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f. (8) Using the previous parts of this question, show that, for any h ∈ (0, 1),

P

(
r(ŝ) ≥ r̂(ŝ) + 2 ˆ̂Rn + 7m

√
log 3/h

2n

)
≤ h (9)

(This is not the tightest bound we could get here, but optimizing the bound is un-informatively
messy.)

2. Computing exercise The file data-05.csv on the class website contains a simple data set, with two
predictor variables and a binary response which is either +1 or −1.

a. (8) Load the data file and plot it, using color or shape to indicate which points are + and which
are −. Can you guess the rule used to assign the class labels?

b. (8) Using the tree or rpart packages in R, fit a decision tree to predict the labels. Report the
tree and the mis-classification rate on this data. (If you don’t use R, these packages implement
the CART algorithm of Breiman et al. (1984); there should be an equivalent package in
your favorite language, but remember you weren’t promised any computing support for other
languages.)

c.(10) Generate a sequence of Rademacher random variables, and use the same package to fit a new
decision tree, which tries to predict those random variables. What is the mis-classification
rate?

d.(10) Explain how the mis-classification rate you got in Q2c can be converted into an estimate
of the Rademacher complexity, what Q1 wrote as ˆ̂R. What is that estimated Rademacher
complexity?

e. (8) Use the previous parts of this question, and Q1f, to give an upper bound on the mis-classification
rate that will hold with 95% confidence.

3. (1) How much time did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All quantitative and mathematical
claims are supported by appropriate derivations, included in the text, or calculations in code. Numerical
results are reported to appropriate precision.
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