
Homework 6

36-465/665, Spring 2021

Due at 6 pm on Thursday, 18 March 2021

Agenda: Seeing that the growth function (which is distribution-free) upper-bounds the
Rademacher-complexity (which is distribution-dependent).

An important result related to Rademacher complexity is called Massart’s lemma, and goes as follows. Say
x1, x2, . . . xm are a fixed (non-random) and finite set of n-dimensional vectors, and ρ = maxi∈1:m ‖xi‖ (i.e. ρ
is the length of the longest vector). Say σ is a n-dimensional vector of Rademacher random variables, so each
coordinate of σ is ±1 with equal probability and independent of the other coordinates. Then
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(This type of result is sometimes called a “maximal inequality”.)

1. The growth function limits Rademacher complexity. In this question, we will assume that Massart’s
lemma holds, and use it to prove that, when F is a family of functions taking the values ±1,

Rn(F) ≤
√

2 log ΠF (n)
n

(2)

as asserted in the slides for lecture 9. For the purposes of this problem, assume that F is “closed under
negation”, meaning that if f ∈ F , then −f ∈ F as well.

a. (5) Suppose all the entries of an n-dimensional vector are either −1 or 1. Show that the length of
the vector is

√
n.

b. (5) Suppose we see data points z1, z2, . . . zn. Explain how applying a function f ∈ F to these
data points leads to an n-dimensional vector; what is the length of this vector?

c. (6) Define Π(z1, . . . zn) to be the number of distinct vectors we can get by using different functions
from F in the manner described in Q1b. Use Massart’s lemma to show that
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n

(3)

d. (6) Use Q1c to show that
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√

2 log ΠF (n)
n

(4)

e. (5) Use (e) to show that

Rn(F) ≤
√

2 log ΠF (n)
n

(5)

2. Proving Massart’s lemma

a. (5) Explain why, for any t > 0,

exp
(
tE
[

max
i∈1:m

σ · xi

])
≤ E

[
exp

(
t max

i∈1:m
σ · xi

)]
(6)
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b. (5) Using Q2a, show that
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E [exp (tσ · xi)] (7)

c. (5) Use Q2b, the fact that coordinates of σ are IID, and the Hoeffding bounds, to show that
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d. (6) Use Q2c to show that
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e. (5) Use Q2d to prove Massart’s lemma.

3. Getting a feel for the VC bounds In the slides, we derived generalization error bound using VC dimension.
These involved a term

√
2 log (en/d)

n/d .

a. (5) Plot this as a function of n over the range from 1 to 106 for d = 1, d = 2, d = 10, and d = 1000.
(The full range may not be meaningful for every d — why not?) I suggest using a logarithmic
scale on the horizontal axis.

b. (5) Why do you think I’m only asking you to plot this term, and not the whole of the bound on
the generalization error?

c. (6) What lessons do you take from these curves about how much data you need to estimate models
of different complexities to the same precision?

4. “It is certainly not the least charm of a theory that it is refutable” : You have very likely heard people
talk about whether or not a certain idea is “falsifiable”. The idea of falsifiability goes back to the
philosopher Karl Popper in 1934, who asserted that a hypothesis is scientific only if it could be falsified
by observations, i.e., if there is some possible data which could show that the hypothesis was false1.
Suppose we’re interested in the relationship between some binary variable Y and one or more other
variables X. Our friend Fritz proposes that Y = f(X), exactly, for some function f in a family of
classifier functions F . Fritz is vague about exactly which f ∈ F , but, as he says, many scientific theories
include parameters which have to be determined by experiment or observation.

a. (5) If Fritz’s family of classifiers F has VC dimension d <∞, then Fritz’s hypothesis is falsifiable.
Explain why this is so, and explain why it would be possible to falsify it with as few as d+ 1
data points.

b. (5) Could Fritz’s hypothesis be falsified by fewer than d+ 1 data points, or do we need at least
that many to have any hope of falsifying it? If you think the answer depends on further details
about F , beyond its VC dimension, explain.

c. (5) Suppose instead that Fritz’s family F has infinite VC dimension. Does this necessarily make
Fritz’s hypothesis unfalsifiable? Explain.

d. (5) A true hypothesis can also be falsifiable. In that case, it will never actually be falsified, no
matter how much data we see. Popper insisted that even if a hypothesis is falsifiable, and it is
not falsified by a large amount of data, we still do not have reason to think the hypothesis is
true. Many people have found this idea of his deeply wrong-headed. Does the generalization
error bound using VC dimension show he was wrong?

1Popper didn’t think every falsifiable idea was a good scientific hypothesis, but he did insist on falsifiability as a minimum for
science. Also, in case you’re wondering whether the falsifiability criterion is itself falsifiable, Popper offered it more as a proposal
about how we should use words like “science”, i.e., not a theory about the world.
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5. (1) How much time did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All quantitative and mathematical
claims are supported by appropriate derivations, included in the text, or calculations in code. Numerical
results are reported to appropriate precision.
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