
Homework 12

36-465/665, Spring 2021

Due at 6 pm on Thursday, 29 April 2021

Agenda: Filling in some important details on support vector machines

We have a data set (x1, y1), . . . (xn, yn). Each class label yi is either +1 or −1. We also have a kernel function
K(x, z), resulting in an [n× n] kernel matrix K with Kij = K(xi, xj). The margin of function g at the ith
data point, γi, is defined as yig(xi). The over-all margin of the function g is mini∈1:n γi, written M(g).

We will begin working in feature space, so we are interested in functions of the form

g(x) = b0 + s(x) = b0 +
∞∑
i=1

βjφj(x) = b0 + 〈β, φ(x)〉 (1)

Here, the transformations φj are the features (implicitly) defined by the kernel K, via K(x, z) =∑∞
j=1 φj(x)φj(z).

1. Turning margin maximization into a quadratic program We’d like to try maximizing the over-all margin.
Because that’s a minimum over all data points, one way to set up the optimization problem is as follows:

min
b0,β,γ

−γ (2)

subject to yi(b0 + 〈β, φ(xi)〉) ≥ γ, i ∈ 1 : n (3)
and ‖β‖ = 1 (4)

a. (5) What’s the relationship between γ and the margin?
b. (6) Explain why requiring ‖β‖ = 1 doesn’t change the performance of the resulting classifier. If it

doesn’t change the performance, why impose the requirement?
c. (5) The Lagrangian for this constrained optimization problem is

L(β, b0, γ, α, λ) = −γ −
n∑
i=1

αi [yi(b0 + 〈β, φ(xi)〉)− γ] + λ(‖β‖2 − 1) (5)

Explain what each term in this Lagrangian is doing — which come from the original objective
function, and which ones enforce the constraints? Why does ‖β‖2 appear here, rather than
‖β‖?

d. (5) Differentiate L with respect to β, γ and b0 to show that the following equations hold at the
optimum:

β = 1
2λ

n∑
i=1

αiyiφ(xi) (6)

n∑
i=1

αi = 1 (7)

n∑
i=1

αiyi = 0 (8)
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e. (5) Use Q1d to show that, at the optimum,

L(β, b0, γ, α, λ) = − 1
4λ

n∑
i=1

n∑
j=1

αiαjyiyjKij − λ (9)

Hint: Kij = K(xi, xj) = 〈φ(xi), φ(xj)〉.
f. (5) Show that optimizing Q1e over λ gives

L(α) = −
√∑

i,j

αiαjyiyjKij (10)

g. (6) Explain why the original optimization problem is equivalent to

min
α

n∑
i=1

n∑
j=1

αiαjyiyjKij (11)

subject to
n∑
i=1

αi = 1 (12)

and
n∑
i=1

yiαi = 0 (13)

and αi > 0, i ∈ 1 : n (14)

h. (5) Explain why the margin of the resulting machine is γ∗ =
√∑

i,j αiαjyiyjKij .
i. (5) A vector xi is called a support vector if αi 6= 0. All the support vectors will haver margin

equal to γ∗. Use this to show that

b0 = yi(γ∗)2 −
n∑
j=1

αjyjKji (15)

The final form of the support-vector-machine classifier is, for reference

g(x) = sgn
(
b0 +

n∑
i=1

αiyiK(x, xi)
)

(16)

where b0 is given in Q1i.

2. Empirical Rademacher complexity of large-margin kernel machines We’ll write the risk of a classifier g,
using the 0-1 loss, as r(g) = P (Y 6= sgn g(X)). In this problem, we’ll want to give generalization error
bounds in terms of the margin for this risk. As an intermediate step, however, we’ll introduce another,
more continuous loss function. Define the margin-based loss function `γ(u) as

`γ(u) =

 1 u ≤ 0
1− u/γ 0 < u ≤ γ

0 u > γ
(17)

a. (5) Show that `γ(yg(x)) ≥ the 0− 1 loss of using the sign of g(x) as a classifier.

b. (5) Explain why Q2a implies that
r(g) ≤ E [`γ(Y g(X))] (18)

c. (6) Explain why, when g was selected from a class of functions G,

P

(
E [`γ(Y g(X))] ≥ 1

n

n∑
i=1

`γ(Yig(Xi)) + 2R̂n(`γ ◦ G) + 3
√

log 2/α
2n

)
≤ α (19)

where `γ ◦ G is the class of f(x, y) 7→ `γ(yg′(x)) for all the various g′ ∈ G. Hint: Go back to
our basic results about empirical Rademacher complexity.

2



d. (5) A function f is called Lipschitz continuous, with Lipschitz constant L, if |f(u1)−f(u2)| ≤
L|u1 − u2|. (If f is differentiable, this means that its derivative is everywhere ≤ L.) Show
that `γ is Lipschitz-continuous, and find an expression for its Lipschitz constant. Your answer
will involve γ (and possibly other things).

e. (5) Here is a fact about Rademacher complexity which we will use but not prove (see extra credit
below). Start with a class of functions G, of known (or bounded) empirical Rademacher
complexity R̂n(G). Fix a function λ which is Lipschitz-continuous, with Lipschitz constant
L, and for which λ(0) = 0. Define a new class of functions F = {λ(g(·)) : g ∈ G}. Then
R̂n(F) ≤ 2LR̂n(G). Use this fact to show that

R̂n(`γ ◦ G) ≤ 2LR̂n(G) (20)

You should be able to be explicit about the value of L here from earlier parts of this question.

f. (6) We now assume that G is the class of kernel machines with ‖β‖ = 1. Using earlier results in
the course, state a bound on R̂n(G). Your answer should involve the sample size n, the kernel
matrix K, and possibly other things.

g. (5) Using the earlier parts of this question, show that

P

(
r(g) ≥ 1

n

n∑
i=1

`γ(Yig(Xi)) + (something) + 3
√

log 2/α
2n

)
≤ α (21)

Be explicit about the (something) term, which should involve n, γ, and K (and possibly other
things).

h. (5) Using Q2g, state a bound on the mis-classification risk of a kernel-based classifier, with
‖β‖ = 1, which classifies the entire training data set perfectly and achieves margin γ. Does
your result match the one stated (without proof!) in Lecture 21? If not, are they compatible?

3. (1) How much time did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All quantitative and mathematical
claims are supported by appropriate derivations, included in the text, or calculations in code. Numerical
results are reported to appropriate precision.

Extra credit (5 points total): Prove the result about Rademacher complexity of “compositional” function
classes used in Q2. That is, assume that we have a fixed function λ which is Lipschitz-continuous, with
constant L, and where λ(0) = 0, and a class of functions G of empirical Rademacher complexity R̂n(G).
Define F as class of all functions f of the form f(z) = λ(g(z)) for g ∈ G. Show that R̂n(F) ≤ 2LR̂n(G).
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http://www.stat.cmu.edu/~cshalizi/sml/21/lectures/21/lecture-21.html#(12)

