
Homework 13

36-465/665, Spring 2021

Due by 6 pm on Sunday, 9 May 2021

Agenda: Random feature machines. Q1 and Q2 are theory; Q3 is an application, which can be
done independently of the first two questions.

Questions 1 and 2 in this assignment will build towards showing the following result. We have a collection of
functions ψ(x;w) with a parameter or index w. For each w, maxx |ψ(x;w)| ≤ 1. We also have a distribution
ρ(w), and a constant C > 0. We draw W1, . . .Wq independently and randomly from ρ(w). We then get our
data (x1, y1), . . . (xn, yn). These are IID, and the xs follow a pdf µ (which we don’t know). After getting
our data, we calculate our q-dimensional feature vectors, ψ(xi) = (ψ(xi;W1), . . . ψ(xi,Wq)). Finally, we do a
constrained empirical risk minimization over linear models in these features:

β̂ = argmin
β:maxi∈1:q |βi|≤C/q

1
n

n∑
i=1

`(yi, β · ψ(xi))

The claim is that if ` is Lipschitz-continuous, with Lipschitz constant L, then

P
(
r(ŝ)− r(s∗) ≥ O

(
1√
n

+ 1
√
q

)
LC
√

log (2/δ)
)
≤ δ

We will work through this with the constants.

1. The approximation part In this question, we will think through what the best function we can hope
to make from the basis functions ψ is, and how well it can be approximated using the random set of
functions ψ(x;W1), . . . ψ(x;Wq). To do so, we’ll need to define two function classes:

F ≡
{
f(x) =

∫
b(w)ψ(x;w)dw | |b(w)| ≤ Cρ(w)

}
That is, Fρ consists of all the functions we can get by taking infinite combinations of the basic functions
ψ, provided the weight ψ(x;w) gets isn’t too big compared to the probability ρ(w) of that value of w.
The other function class is

F̂ ≡

f(x) =
q∑
j=1

βjψ(x;Wj) | |βj | ≤ C/q


This is the class of finite combinations of the random functions ψ(x;Wj), though with a similar
bound on the coefficients. We are going to want to see how well the best function in F can be
approximated using F̂ . We also need to define a size or norm for functions; we’ll use the L2(µ) norm,
defined by ‖f‖ ≡

√∫
f2(x)µ(x)dx. The corresponding distance between two functions f and g is

‖f − g‖ =
√∫

(f(x)− g(x))2µ(x)dx.

a. (5) Deviation inequality for functions We start with a technical result about averaging random
functions. Say F1, . . . Fq are IID random functions of limited norm, P (‖F1‖ ≤ m) = 1. Write
F for their average. Show that changing one of the Fi changes F by at most 2m/q. Show that
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E
[
‖F − E

[
F
]
‖2] ≤ m2/q. Combine these with the bounded-difference inequality to show

that
P
(
‖F − E

[
F
]
‖ ≥ m
√
q

(
1 +

√
2 log 1/α

))
≤ α

b. (8) Approximating F by F̂ Pick any function f∗ ∈ F , which we can represent as
∫
a(w)ψ(x;w)dw

for some weight function a(w). Define Fi as a(Wi)
ρ(Wi)ψ(x;Wi). Show that E [Fi] (x) = f∗(x).

Define F as the average of F1, . . . Fq. Use the previous part to show that F ∈ F̂ , and that

P
(
‖F − f∗‖ ≥ C

√
q

(
1 +

√
2 log 1/α

))
≤ α

c. (5) Suppose that the loss function is Lipschitz-continuous in the action, with Lipschitz constant
L. Fix any function f∗ ∈ F , and let F be as in the previous part. Show that

P
(
r(F ) ≥ r(f∗) + LC

√
q

(
1 +

√
2 log 1/α

))
≤ α

Hint: For any random variable, E [|Z|] ≤
√

E [Z2]. (You don’t have to prove this, but see
EC1.)

d.(10) Now let s∗ be the function in F which minimizes the risk. Is it true that with probability at
least 1− α, there is an F ∗ ∈ F̂ such that

r(F ∗) ≤ r(s∗) + LC
√
q

(
1 +

√
2 log 1/α

)
Explain.

2. The estimation part

a. (8) Show that R̂n(F̂) ≤ C/
√
n. Hint: It’s possible to do this straight from the definitions

of empirical Rademacher complexity and of F̂ , but you can also use known results from
earlier in this course about the complexity of linear function classes, and the assumption that
|ψ(x;w)| ≤ 1 for all x and w.

b. (5) Show that the Rademacher complexity of the loss class is at most 2LC/
√
n. Hint: HW12Q2e.

c.(12) Derive the final generalization error bound, of the form

P
(
r(β̂) ≥ r(s∗) + g(n,L,C, q, α)

)
≤ 2α

Use your answers to earlier questions to determine the appropriate combination of terms in g.
Hint: The 2 in ≤ 2α is not a typo, but an indication that you should use a union bound.

3. Try it out Revisit the anomaly.csv data set from HW8Q3. Divide it randomly and equally into
training and testing sets.

a. (8) Create a library of 40 random cosine transformations of the t variable. These should all be
functions of the form cos (wt+ b), with b uniformly distributed between −π and π, and w
following a standard Gaussian. Create a plot showing the first four of the random cosine
transformations from your library. R hint: Look at the .Rmd file for lecture 22.

b. (8) Add new columns to the data frame giving the value of the cosine transformations at each
data point. (This should add 40 new columns.) Are these new features uncorrelated with each
other? Are they uncorrelated with t? Should they be?
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http://www.stat.cmu.edu/~cshalizi/sml/21/lectures/22/lecture-22.Rmd


c.(10) Split the data randomly and evenly (as evenly as possible) into a training and a testing set.
For each q ∈ 1 : 40, fit a linear model for the anomaly variable as a function of the first q
random features in your library, using only points in the training set. Calculate the mean
squared error on the testing set. Plot the out-of-sample MSE versus q. What is the optimal
value of q?

d.(10) Create a plot showing the actual data points, and the predicted values of the model with the
optimal value of q. Comment.

4. (1) How much time did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All quantitative and mathematical
claims are supported by appropriate derivations, included in the text, or calculations in code. Numerical
results are reported to appropriate precision.

Extra credit

1. (3) Prove that for any (scalar) random variable Z, E [|Z|] ≤
√
E [Z2]. Hint: Jensen’s inequality.

2. (5) Repeat the exercise of Q3 for the same split into training and testing sets, but a different library
of 40 random features. Do you select the same order of model? Should you? How similar are the
fitted curves? Should they be similar?
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