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1 Notation

• Upper case = random variable, lower case = realization
• When X1, . . . Xn, . . . is a sequence of random variables, X1:n abbreviates the finite sequence
X1, X2, . . . Xn−1, Xn, and X indicates the entire infinite random sequence. This may suggest that Xn

is just a coordinate of X; it should.

2 Bound on the variance of a bounded-range random variable

Proposition 2.1. Suppose Z is a scalar random variable confined to some interval, so that P (a ≤ Z ≤ b) = 1.
Then Var [Z] ≤ (b− a)2/4.

Proof. First, we will maximize the variance of bounded-range random variables which are supported only at
the end-points of the range. Then we will argue that shifting probability into the interior of the range can
only reduce the variance, so the apparently-special case we considered first is all we really need.

So, consider random variables where Z = b with probability p, and Z = a with probability 1 − p. The
expectation is clearly

E [Z] = bp+ (1− p)a = a+ (b− a)p (1)
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and the variance is

E
[
(Z − E [Z])2] = p(b− [a+ (b− a)p])2 + (1− p)(a− [a+ (b− a)p])2 (2)

= p(b− a− (b− a)p)2 + (1− p)(a− a− (b− a)p)2 (3)
= p((b− a)(1− p))2 + (1− p)((b− a)p)2 (4)
= p(b− a)2(1− p)2 + (1− p)(b− a)2p2 (5)
= (b− a)2p(1− p)[(1− p) + p] (6)
= (b− a)2p(1− p) (7)

This is clearly maximized when p = 1/2, yielding a maximum value for Var [Z] of (b− a)2/4.

The above result was for distributions which divide their probability between Z = a and Z = b; let us
call these the “boundary distributions”. Fix any one such distribution, with mean µ = a+ (b− a)p. Now
consider any other, non-boundary distribution on [a, b] with the same expectation µ. Clearly, this distribution
must put more probability mass closer to µ than the boundary distribution we started with. But since
Var [Z] = E

[
(Z − E [Z])2], this distribution must have a smaller variance than the two-point distribution

with the same µ. Moreover, every non-boundary distribution has the same expectation as some boundary
distribution. (This is because every distribution on a finite interval [a, b] (i) has a well-defined expected value,
and (ii) that expected value is also in the interval [a, b], which (iii) means it equals a + (b − a)p for some
p ∈ [0, 1].) So every non-boundary distribution has less variance than the boundary distribution with the
same expectation. Hence the distribution of maximum variance must be a boundary distribution. But we
have just found the distribution which maximizes variance within the boundary distributions.

3 Hoeffding’s bound on the moment generating function

Proposition 3.1. Suppose Z is confined to the interval [a, b], with expected value µ. The MZ(t) ≤
etµet

2(b−a)2/8, i.e., Z is sub-Gaussian with scale of at most (b− a)2/4.

Proof. The factor of etµ in the result just arises from “pulling out” the expectation of Z, so the real assertion
is that MZ−E[Z](t) ≤ et

2(b−a)2/8. One might think that this would require calculations to bound the third,
fourth, etc., central moments, rather in the fashion that our previous result bounded the variance. However, a
somewhat indirect approach, that goes back to Hoeffding, avoids this at the cost of look a bit strange at first.

First, let’s define C ≡ Z − E [Z], and K(t) ≡ logMC(t). The result we care about is equivalent to the
statement that K(t) ≤ t2(b− a)2/8, so if we can establish the latter we’ve won.

Hoeffding’s trick for doing so is to consider a broader family of distributions than just that of C. Say that C
has pdf1 p(z), and, for each θ, define Cθ as the random variable with pdf

pθ(z) = p(z) exp (θz −K(θ)) (8)

Notice that pθ(z) ≥ 0 and that
∫
pθ(z)dz =

∫
p(z)eθzdze−K(θ) = MC(θ)

MC(θ) = 1, so pθ(z) is a valid probability
density function for each θ.

This is an example of what’s called an “exponential family” distribution, with “base distribution” p(z). One
1If you’re worried about non-continuous distributions, you have a point (pardon the pun), but this can be handled by using

measure-theoretic probability. Let P be the probability measure of C, and say that Pθ is the measure absolutely continuous with
respect to P with density (=Radon-Nikodym derivative) dPθ

dP
= exp (θz −K(θ)). The arguments in the text then go through

unchanged.
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of the basic properties of such a distribution is that we can recover its moments from the function K(θ). Thus

dK

dθ
= d

dθ
logE

[
eθC
]

(9)

= 1
E [eθC ]E

[
d

dθ
eθC
]

(10)

= e−K(θ)E
[
CeθC

]
(11)

= E
[
CeθC−K(θ)

]
(12)

which is E [Cθ]

Similarly,

d2K

dθ2 = Var [Cθ] (13)

≤ (b− a)2

4 (14)

using the result of the previous section.

Finally, let us Taylor expandK(t) around 0. Taylor’s theorem in this case becomes exact, not an approximation,
for some point between the expansion point and t, substituted into the last derivative, thus:

K(t) = K(0) + t
dK

dθ
(0) + t2

2
d2K

dθ2 (θ) (15)

where 0 ≤ θ ≤ t. But K(0) = 0, dKdθ (0) = E [C] = 0, and d2K
dθ2 (θ) ≤ (b− a)2/4, so

K(t) ≤ t2

2
(b− a)2

4 = t2
(b− a)2

8 (16)

4 Martingales and Martingale Differences

I don’t know of any way of proving results like the Efron-Stein inequality or the bounded difference /
McDiarmid inequality without using ideas from probability theory about types of random sequences called
“martingales” and “martingale difference sequences”.

A sequence of random variables Z is a martingale2 when the conditional expectation of the next value is
the present value:

E [Zn+1|Z1, Z2, . . . Zn] = Zn (17)

By extension, the sequence Z is a martingale with respect to the sequence X when

• Zn is a function3 of X1:n, and
2In English, the word “martingale” original meant a set of straps attached to a horse’s head to keep the animal from raising

its head too high. The word came to English from French, which got it from Spanish, which got it from the Arabic word al
marta’a, “the fastening”. It then somehow became the name of a gambling scheme where you keep doubling your bet every time
you lose, in the hope of coming out ahead in one throw. (Maybe with the idea that this rule was restraining how high you bet?)
In the 1930s, French mathematicians trying to define the notion of probability in terms of betting needed a name for processes
that represented the stake of a gambler in a fair game, and somehow seized on “martingale”. Random processes whose next
increment averages to zero have since turned out to be extremely useful technical tools in probability theory, even in contexts
that have nothing to do with gambling.

3Strictly speaking, Zn must be a “measurable” function of X1:n. A very rough explanation of “measurable function” would
go as follows. Suppose we know that the argument X to a function f is in some set A, in stmbols X ∈ A for some set A. Then
we know that f(X) ∈ f(A), the “image” of A under the function f . Now consider what happens if we know that X is in a
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• the conditional expectation of the next value given the history is the current value:

E [Zn+1|X1, . . . Xn] = Zn (18)

A martingale, in the simple sense, is a martingale with respect to itself.
Theorem 4.1. If Z is a martingale with respect to X, then for any m > n,

E [Zm|X1:n] = Zn (19)

Proof. An equivalent statement is that for any h > 0, E [Zn+h|X1:t] = Zn. We will prove this by mathematical
induction, since it’s clearly true for h = 1 (by the definition of a martingale).

E [Zn+h+1|X1:t] = E [E [Zn+h+1|X1:n+h] |X1:t] (20)
= E [Zn+h|X1:t] (21)
= Zn (22)

using the martingale property in the middle line, and the inductive hypothesis in the last line.

The random sequence Dn is a martingale difference sequence with respect to X when - Dn is a function
of X1, . . . Xn, and - the conditional expectation of the next value give the past is always zero:

E [Dn+1|X1, . . . Xn] = 0 (23)

Our next result justifies the name “martingale difference sequence”:
Proposition 4.1. If Z is a martingale with respect to X, and we define Dn ≡ Zn − Zn−1, then D is a
martingale difference sequence with respect to X.

Proof.

E [Dn+1|X1:n] = E [Zn+1 − Zn|X1:n] (24)
= E [Zn+1|X1:n]− E [Zn|X1:n] (25)
= Zn − Zn = 0 (26)

where in the last step we use the facts that Zn is a function of X1:n, and that E [Zn+1|X1:n] = Zn.

We can also go the other way:
Proposition 4.2. If D is a martingale difference sequence with respect to X, then Yn =

∑n
i=1 Di defines a

martingale with respect to X.

Proof. E [Yn+1|X1:n] = E [Yn +Dn+1|X1:n] = Yn.

Proposition 4.3. If D is a martingale difference sequence, then E [Dn] = 0 for all t.
Proposition 4.4. By mathematical induction. Suppose E [Dn] = 0. By the law of total expectation,
E [Dn+1] = E [E [Dn+1|X1, . . . Xn]] = E [Dn] = 0.
Proposition 4.5. If D is a martingale difference sequence, and s < t, then E [Dn|X1, . . . Xs] = 0.

Proof. By mathematical induction and the law of total expectation, as before.
sequence of nested, increasingly small sets An, which narrow down to a particular point x. The function f is “measurable” if the
image sets f(An) also narrow down to the single point f(x). This is a somewhat weaker requirement that f being continuous.
(For instance, the indicator function for any interval on the real line is measurable, but discontinuous.) The point of requiring a
measurable function, rather than just any function, is to rule out very erratic, “pathological” functions which do not play nicely
with probability distributions. — If you know enough measure theory, or measure-theoretic probability, to poke holes in this
explanation, you also know the real definition of “measurable function” as well as I do. If this is your first exposure to such
concepts and are curious to learn more, I recommend either Grimmett and Stirzaker (1992), or Pollard (2002). (The classic book
by Halmos (1950) is great but a bit abstract.)
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Proposition 4.6. If D is a martingale difference sequence, and s 6= t, then Cov [Dn, Dm] = 0. That is,
martingale difference sequences are uncorrelated.

Proof. Without loss of generality, say thatm < n. Because E [Dn] = E [Dm] = 0 (by the previous proposition),
we’re done if we can show E [DmDn] = 0. To do this, use the law of total expectation again:

E [DmDn] = E [DmE [Dn|X1, . . . Xs]] (27)
= E [Dm0] = 0 (28)

Because uncorrelated variables are sometimes called “orthogonal”, we sometimes say martingale difference
sequences are “orthogonal sequences”4.

4.1 Sub-Gaussian martingale difference sequences

Proposition 4.7. Suppose D is a martingale difference sequence with respect to X, and each Dn is condi-
tionally sub-Gaussian, meaning that E

[
etDn |X1, . . . Xn−1

]
≤ exp

(
t2σ2

n/2
)
for some σ2

n <∞. Then the sum
of the Dns is sub-Gaussian, and the sub-Gaussian constants add:

E

[
exp

(
t

n∑
i=1

Di

)]
≤ exp

(
− t

2

2

n∑
i=1

σ2
i

)
(29)

Proof. By mathematical induction. To get the inductive step, assume this holds for n− 1, and then use the
law of total expectation and the conditional sub-Gaussian bound:

E

[
exp

(
t

n∑
i=1

Di

)]
= E

[
E

[
exp

(
t

n∑
i=1

Di

)
|X1:n−1

]]
(30)

= E

[(
exp

(
t

n−1∑
i=1

Di

))
E [exp (tDn)|X1:n−1]

]
(31)

≤ E

[(
exp

(
t

n−1∑
i=1

Di

))
exp

(
t2

2σ2
n

)]
(32)

= exp
(
t2

2 σ
2
n

)
E

[
exp

(
t

n−1∑
i=1

Di

)]
(33)

The n = 1 case is guaranteed by the assumption, since when n = 1 we can’t condition on earlier Xs, hence
E
[
etD1

]
≤ exp

(
t2σ2

1/2
)
for some σ2

1 .

Proposition 4.8. If D is a martingale difference sequence with respect to X, and P (an ≤ Dn ≤ bn) = 1,
then

E

[
exp

(
t

n∑
i=1

Di

)]
≤ exp

(
t2

2

n∑
i=1

(bi − ai)2

4

)
(34)

Proof. Combine the previous proposition with Hoeffding’s bound on the moment generating function of a
limited-range random variable.

4Suppose the sequence O has E [On] = 0 for all n, and Cov [On, Om] = 0 for all m 6= n. Is this orthogonal sequence O
necessarily a martingale difference sequence? If so, can you prove it? If not, can you find a counter-example, a sequence that is
orthogonal but is not a martingale difference sequence?
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Both of the last two propositions are sometimes called “the Azuma-Hoeffding bound”, as are a number of
other closely related results about the moment generating functions of sums of martingale differences, of
martingales, on the deviations of sums of martingale differences from their expectations, etc. (Hoeffding’s
original paper indicated that his result should apply not just to independent variables but also to martingale
differences, and Azuma seems to have been the first to work through the details.)

4.2 Turning ordinary functions into martingales, and martingale differences,
a.k.a. Doob’s martingale

Take any function f of n arguments, say f(X1, . . . Xn). A classic, widely-used construction relates this to a
martingale. Define

Zk = E [f(X1:n)|X1:k] (35)
with the understanding that Zn = f(X1:n), the random function itself, and that Z0 = E [f(X1:n)], the
unconditional expectation. Let’s check that this is a martingale with respect to X: - For each k, Zk is clearly
a function of X1:k. - We thus need to check the conditional expectation property, that E [Zk+1|X1:k] = Zk.
But this follows by the law of total expectation:

E [Zk+1|X1:k] = E [E [f(X1, . . . Xn)|X1:k+1] |X1:k] (36)
= E [f(X1, . . . Xn)|X1:k] (37)
= Zk (38)

by the definition of Zk.

If we define Dk = Zk − Zk−1, then D is a martingale difference sequence. We then have the Doob
representation

f(X1, . . . Xn) = E [f(X1, . . . Xn)] +
n∑
i=1

Di (39)

which shows how the function is equal to its expected value plus a sum of expectation-0, uncorrelated random
terms.

5 The Efron-Stein inequality

Let us begin with the Doob representation, which to recall is

f(X1, . . . Xn) = E [f(X1, . . . Xn)] +
n∑
i=1

Di (40)

where the martingale difference sequence D is defined by Dk = E [f(X1:n)|X1:k]−E [f(X1:n)|X1:k−1]. Because
E [f(X1, . . . Xn)] is non-random,

Var [f(X1, . . . Xn)] = Var
[

n∑
i=1

Di

]
(41)

Since, as we’ve seen, the terms in a martingale difference sequence are uncorrelated,

Var [f(X1, . . . Xn)] =
n∑
i=1

Var [Di] =
n∑
i=1

E
[
D2
i

]
(42)

where the last equality holds because E [Dk] = 0 for all k.

Nothing in the last paragraph relies on the X variables being independent, but the next steps in the argument
rely crucially on this.
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6 The bounded difference / McDiarmid inequality

Recall from the slides that we say a function f(x1, . . . xn) has the bounded difference property, with
bounds di, if changing argument xi can change the value of the function by at most di:

max
xi,yi
|f(x1, . . . xi−1, xi, xi+1, . . . xn)− f(x1, . . . xi−1, yi, xi+1, . . . xn)| ≤ di (43)

We want to use this to show that f must be close to its expectation. Doob’s construction tells us how to
re-write f as a sum of martingale differences, and the Azuma-Hoeffding result tells us sums of martingale
differences are close to their expectations. So we’re almost there, and just need to prove the following:
Proposition 6.1. If f has the bounded difference property with bounds d, then the martingale differences
Dk ≡ E [f(X1:n)|X1:k]− E [f(X1:n)|X1:k−1] is bounded to an interval of the same length dk.

Proof. Let’s define upper and lower limits for Dk:

Lk ≡ min
x

E [f(X1:n)|X1, . . . Xk−1, Xk = x]− E [f(X1:n)|X1, . . . Xk−1] (44)

Uk ≡ max
x

E [f(X1:n)|X1, . . . Xk−1, Xk = x]− E [f(X1:n)|X1, . . . Xk−1] (45)

Notice that Lk and Uk are random variables, since they are functions of X1:k−1 (hence they’re written with
upper-case letters). Nonetheless it should be clear that

Lk ≤ Dk ≤ Uk (46)

so we need to show that Uk − Lk ≤ dk.

Uk − Lk = max
x

E [f(X1:n)|X1:k−1, Xk = x]−min
x′

E [f(X1:n)|X1:k−1, Xk = x′] (47)

= max
x,x′

E [f(X1:n)|X1:k−1, Xk = x]− E [f(X1:n)|X1:k−1, Xk = x′] (48)

= max
x,x′

∫
f(X1, . . . Xk−1, x, xk+1, . . . xn)p(xk+1:n|X1:k−1, Xk = x)dxk+1:n (49)

−
∫
f(X1, . . . Xk−1, x, xk+1, . . . xn)p(xk+1:n|X1:k−1,Xk=x′)dxk+1:n

(Of course if the Xs are discrete we do a sum instead of this integral.) Here, finally, we use the fact that the
Xk are independent, so that the distribution of Xk+1, . . . Xn is the same no matter what X1:k might be, and
in particular whether Xk = x or Xk = x′ makes no difference. This lets us combine the integrals:

Uk − Lk (50)

= max
x,x′

∫
(f(X1, . . . Xk−1, x, xk+1, . . . xn)− f(X1, . . . Xk−1, x, xk+1, . . . xn)) p(xk+1:n)dxk+1:n

≤
∫
dkp(xk+1:n)dxk+1:n (51)

= dk (52)

using the bounded difference property of f . So we have shown that P (Uk ≥ Dk ≥ Lk) = 1 and Uk −Lk ≤ dk,
as desired.

Combining this with our previous result about bounded martingale differences, we get
Proposition 6.2. If f has the bounded difference property with bounds d, then

E [exp (tf(X1:n))] ≤ exp
(
t2

2

n∑
i=1

d2
i

4

)
(53)

and the bounded-difference or McDiarmid inequality in the slides follows by the now-familiar sub-Gaussian
deviation bound.
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