
Homework 8: Solutions

36-350, Fall 2011

Note: Unfortunately, there was a typo in the homework instructions: λ was supposed to follow a gamma
distribution with shape a and scale 1. The definition of the gamma density given in the homework in-
structions reflected the intended distribution, therefore while all students generated their λ values from
the gamma(shape = 1, scale = a) distribution but calculated p(x) and p(λ|x) as if λ ∼ gamma(shape =
a, scale = 1). This means that the histograms will not match the calculated density in Problem 3, and
possibly not match in Problem 6 depending on how students did Problem 5. In order to accommodate this
in the grading, we gave everyone full credit for generating their λ’s or calculating densities using either case,
however we docked points if they failed to recognize the mismatch between the histograms and densities.

1. Solution

For each value of X, first we must draw a value of λ from the gamma distribution, and then use that
to define the exponential distribution from which to draw x.

rexpgamma <- function(n, a) rexp(n, rate = rgamma(n, shape = a, scale = 1))

2. Solution

mcmc <- function(x, prior.a, n){

p(x|lambda)*p(lambda)

Since some of our lambda proposals might be non-positive, for these we

force dexpgamma to return 0.

dexpgamma <- function(x,lam){

ifelse(lam <= 0,0,dexp(x, rate = lam)*dgamma(lam, scale = 1, shape = prior.a))

}

Prepare a vector to store sampled lambdas

lam.vec <- rep(NA,n)

Draw initial value of lambda from prior distribution

lam.vec[1] <- rgamma(1, shape = 1, scale = prior.a)

for (ii in 1:(n-1)){

Draw a proposed value of lambda from uniform distribution

prop.lam <- runif(1, min = lam.vec[ii]-.5, max = lam.vec[ii]+.5)

Draw an acceptance probability

acc.prob <- runif(1,0,1)

Part 4 of algorithm in class notes

if (acc.prob < dexpgamma(x,prop.lam)/dexpgamma(x,lam.vec[ii])){

lam.vec[ii+1] <- prop.lam

} else {

lam.vec[ii+1] <- lam.vec[ii]

1

}

}

return(lam.vec)

}

3. Solution

p(x) =

∫ ∞
0

λa−1e−λ

Γ(a)
λe−λx dλ

=

∫ ∞
0

λae−λ(x+1)

Γ(a)
dλ

Letting λ = t
1+x , then dλ = dt

1+x and:

∫ ∞
0

λae(−λ(x+1)

Γ(a)
dλ =

∫ ∞
0

(
t

1 + x

)a
e−t

dt

1 + x

=
(1 + x)−(a+1)

Γ(a)

∫ ∞
0

tae−t dt

=
Γ(a+ 1)

Γ(a)
(1 + x)−(a+1)

= a(1 + x)−(a+1)

4. Solution

X <- rexpgamma(n=1000,a=10)

p <- function(x,a){a*(1+x)^-(a+1)}

hist.density <- function(X, xlim = range(X), breaks = 500){

plot(xlim, c(0,10), type = "n", main = "Histogram and Overlaid Density of p(x)",

xlab = "x", ylab = "Density")

hist(X,freq = FALSE, breaks = breaks, add = T)

x <- seq(0,max(X),length.out = 1000)

lines(x,p(x,10), col = "red")

}

hist.density(X,xlim = c(0,3), breaks = 50)

2

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Histogram and Overlaid Density of p(x)

x

D
en

si
ty

Yes, the histogram and the density do match.

5. Solution

p(λ|x) =
p(x|λ)p(λ)

p(x)

=
λe−λx λ

a−1e−λ

Γ(a)

a(1 + x)−(a+1)

=
λa(x+ 1)a+1e−λ(x+1))

aΓ(a)

which is a Gamma(shape = a+ 1, rate = (x+ 1)). So our function can be written

p.lam.x <- function(lam, x , a) {

(dgamma(lam, shape = a, scale = 1)*dexp(x, rate = lam))/(a/((x+1)^(a+1)))

}

6. Solution

lambdas <- mcmc(x = 5, prior.a = 10, n = 2000)

posterior <- function(lambda,x,a){

(1+x)^(a+1)/(a*gamma(a))*(lambda^a)*exp(-(x+1)*lambda)

}

hist.density <- function(lambdas, xlim = range(lambdas)){

hist(lambdas,freq = FALSE, main = "Histogram and Overlaid Density of p(lambda|x)",

xlab = "lambda", ylab = "Density", xlim = xlim)

3

x <- seq(0,max(xlim),length.out = 1000)

lines(x,posterior(lambda = x, x = 5, a = 10), col = "red")

}

hist.density(lambdas[-(1:1000)], xlim = c(0,4))

Histogram and Overlaid Density of p(lambda|x)

lambda

D
en

si
ty

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

The purpose of the Metropolis algorithm is to make draws from p(λ|x) without having to know p(x), so
if our Metopolis sampler is working then the histogram should match the density calculated in Problem
5. Figure 2 shows that it does.

7. Solution

If we want λ to come from a different density, then Problem 1 would require a substitution for the
rgamma function. Problem 2 only needs a substitution for the dgamma function within the dexpgamma()

function (near the top of the code for the mcmc() function). We would also need to change the inputs to
both the rexpgamma() function from Problem 1 and mcmc() function from Problem 2 to accommodate
the new parameters for λ’s distribution.

4

