Statistical Computing (36-350)
Lecture 7: More Design, and Scoping

Cosma Shalizi and Vincent Vu

21 September 2011

36-350 Lecture 7

@ The scope of names: what they mean where

@ Example: The last homework

ABSOLUTELY ESSENTIAL READING FOR FRIDAY: Sec. 4.4 of
the textbook

MERELY USEFUL READING: Chapter 3

HOMEWORK 4 will be on the website later today, and due at
11:59 pm on Tuesday, 27 September 2011

36-350 Lecture 7

Looking Up Names

When R sees a variable name, it needs to look up what value goes
with that name

It consults the environment, a list of name/value pairs

If the name isn't in the current environment, it looks in the larger,
parent environment, and so on to the global environment

The global environment is what we interact with at the terminal

36-350 Lecture 7

name

X
y

cats

psi

parent
environment

value

c(1,2,3,4)
3.7
a data frame with three columns
function(x,c=1) {ifelse(abs(x)<c,c x,x" 2)}
a pointer telling R where
to look in its memory

36-350 Lecture 7

The Scope of Names

Because R “goes up the chain”, if this environment and its parent
share a name, R uses the local name — that's the scope of the
assighment

When we make an assignment with < — or =, we only modify the
current environment

Changes in this environment do not affect its parents

Changes in the parents affect this one, unless over-ridden locally

36-350 Lecture 7

Scope

Functions and Environments

Inside a function definition, we have a new environment

Giving a function named arguments means that, inside the
function, those names refer to the argument values

The same names might refer to something else outside; doesn't
matter

Parent environment is the one of definition, not execution

36-350 Lecture 7

Examples:

> f <- function(x) {
+ f <= x"2xexp(-x~"2)
+ return(f)
+ } # Assigns this function the name "f"
> f # What value goes with the name "f"?
function(x) {
f <- x"2*exp(-x~2)
return(f)
}
> x <- 3 # Assigns x the value 3, globally
> £(7) # Assigns x the value 7, INSIDE f
[1] 2.569014e-20
> £(x) # Did not change x globally
[1] 0.001110688
> f # Also did not change the global value of "f"
function(x) {
f <- x"2*exp(-x~2)
return(f)

}

36-350 Lecture 7

More examples:
g <- function(x) {
eta <- 2xx*exp(-x~2)

kappa <- -2*x"3*xexp(-x"2)
return(etatkappa)

h <- function(y) {
return(eta*sin(y))

}

Q: what happens if we run

g(3)
h(pi)

A: Depends on what eta is in the parent environment!

36-350 Lecture 7

Scope

Environment of definition vs. execution

> wheel <- function(r) {2*pi*r}

> wheel.inside.wheel <- function(r,pi) { return(wheel(r)) }
> wheel(1)

[1] 6.283185

> wheel.inside.wheel(1,3)

[1] 6.283185

VS.

> wheel.inside.wheel <- function(r,pi) {
+ wheel <- function(r) { 2*pi*r }
+ return(wheel(r))

+}

> wheel.inside.wheel(1,pi)

[1] 6.283185

> wheel.inside.wheel(1,3)

[1] 6

36-350 Lecture 7

Scope

Why Does R Do This To Us?

No interference between the insides of separate functions

.. no restrictions on naming arguments, or on using other people’s
code, whatever their internal names

Looking to larger environments is a convenience: share information
by nesting functions, and allow global constants

36-350 Lecture 7

Design Implications

Compartmentalize information
Sometimes encourages nested functions

36-350 Lecture 7

Example

Example: The last homework

First sketch of parts:

my.nls <- function(params, data.values, controls) {
until the gradient is small or we run out of time
find the gradient at the current parameter guess
adjust the parameters against the direction of the gradient
if the gradient is small, stop, otherwise continue
gather up return values

}

(not really code!)

36-350 Lecture 7

Translate into code:

my.nls <- function(params, N=gmp$pop, Y=gmp$pcgmp, stopping.deriv,
max.iterations, step.scale,deriv.increments) {
for (iteration in 1:max.iterations) {
gradient <- mse.grad(params,deriv.increments)
params <- params - step.scalexgradient
if (all(abs(gradient)) < stopping.deriv) { break() }
}
converged <- (iteration < max.iterations)
fit <- list(params=params,gradient=gradient,iterations=iteration,
converged=converged)
return(fit)

needs an mse.grad function

36-350 Lecture 7

Skipping preliminary analysis:

mse.grad <- function(params,deriv.increments) {
p <- length(params)
stopifnot (p==length(deriv.increments))
gradient <- vector(length=p)
mse.0 <- mse(params)
for (i in 1:p) {
new.params <- params
new.params[i] <- params[i] + deriv.increments[i]
new.mse <- mse(new.params)
gradient[i] <- (new.mse-mse.0)/deriv.increments[i]
}

return(gradient)

Could just do each param. separately if we know how many there
are

Could further vectorize, though this is OK

Needs an mse () function

36-350 Lecture 7

Finally, the mse function:

mse <- function(params,N=gmp$pop,Y=gmp$pcgmp) {
predictions <- params[1]*N"params[2]
mse <- mean((Y-predictions)~2) # Why doesn’t this clobber the function?
return(mse)

}

36-350 Lecture 7

Example

Integration

Problem: how to get mse.grad to notice if the data changes?
Solution 1: change arguments to mse.grad, to include data, which
it passes to mse

Solution 2: manipulate scope, remembering environment of
definition is what matters

Solution 3: functions as arguments (a later lecture)

Let's look at solution 2

36-350 Lecture 7

All together:

my.nls.2 <- function(params, N=gmp$pop, Y=gmp$pcgmp, stopping.deriv,
max.iterations, step.scale,deriv.increments) {
mse <- function(params) {return(mean((Y-params[1]*N~params[2])~2)) }
mse.grad <- function(params,deriv.increments) {
p <- length(params); stopifnot(p==length(deriv.increments))
gradient <- vector(length=p)
mse.0 <- mse(params)
for (i in 1:p) {
new.params <- params
new.params[i] <- params[i] + deriv.increments[i]
new.mse <- mse(new.params)
gradient[i] <- (new.mse-mse.0)/deriv.increments[il
s
return(gradient)
}
for (iteration in 1:max.iterations) {
gradient <- mse.grad(params,deriv.increments)
params <- params - step.scale*gradient
if (all(abs(gradient) < stopping.deriv)) { break() }
}
fit <- list(params=params,gradient=gradient,iterations=iteration,
converged=(iteration < max.iterations))
return(fit)

36-350 Lecture 7

Example

Summary

@ Environments control the values of names

@ Values and assignments in local environments over-rule more
global ones

© “Local” goes by definition, not execution
@ Use scoping to control information sharing between functions

36-350 Lecture 7

	Scope
	Example

