
Homework 3: Improving Estimation by Nonlinear

Least Squares

36-350, Fall 2012

Due at 11:59 pm on Thursday, 20 September 2012

Instructions: You know the drill by now.
Direct objective: Practice with writing and organizing functions.
Indirect objectives: Fitting statistical models; testing small pieces of the code

before trusting them; translating math into code.
Background: In the last lab, we estimated the parameter a in a nonlinear

model,
Y = y0N

a + noise (1)

by minimizing the mean squared error

1

n

n∑
i=1

(Yi − y0N
a
i )2 (2)

We did this by approximating the derivative of the MSE, and adjusting a by an
amount proportional to that, stopping when the derivative became small. Our
procedure assumed we knew y0. In this assignment, we will see how to estimate
two parameters at once.

A function of one variable f(x) is at an extremum when its derivative is zero,
df/dx = 0. A function of multiple variables, say f(x1, x2), is at an extremum
when all the partial derivatives are zero, ∂f/∂x1 = ∂f/∂x2 = 0. Remember
from calculus that the vector of partial derivatives of f , the gradient of f , is
written ∇f . The direction of ∇f(x) is the direction in which f increases most
rapidly when starting from x, and the magnitude of the gradient shows how
quick that increase is. If x is an extremum, ∇f(x) = 0. Since we want to
make our function small, we will try to go against the gradient. The gradient
descent or steepest descent method for minimizing a function starts with a
guess x(0) and a scale factor r, and updates it by

x(t+1) = x(t) − r∇f(x(t))

until ∇f is close to zero.
You will estimate the power-law scaling model by gradient descent.

1. (10) Write a function, called mse(), which calculates the mean squared
error of the model in Eq. 1 on a given data set. mse() should take three

1



arguments: a numeric vector of length two, the first component standing
for y0 and the second for a; a numerical vector containing the values of N ;
and a numerical vector containing the values of Y . The function should
return a single numerical value. The latter two arguments should have as
the default values the columns pop and pcgmp (respectively) from the gmp

data frame in Lab 2. Your function may not use for() or any other loop.

Hint: Look at the slides for Lecture 4.

2. (5) Check that, with the default data, you get the following values.

> mse(c(6611,0.15))

[1] 207057513

> mse(c(5000,0.10))

[1] 298459915

3. (20) Write a function, mse.grad(), which approximates the gradient of
the mean squared error. It should take five arguments: a vector of length
2 giving the point at which we want the gradient; the increment for y0;
the increment for a; and the vectors containing the values of N and Y .
Provide default values for everything except the first vector. mse.grad()
should return a length two vector containing the gradient. This function
must call your mse().

4. (5) Check that you get the following values

> mse.grad(c(6611,0.15),10,1e-5)

[1] 1.650303e+05 1.429197e+10

> mse.grad(c(5000,0.10),7,-1e-5)

[1] -109811.2 -7129496031.7

5. (30) Write a function, plm(), which estimates the parameters y0 and a
of the model (1) by minimizing the mean squared error, and minimizes
the MSE by gradient descent. It should take the following arguments:
an initial guess for y0; an initial guess for a; a vector containing the N
values; a vector containing the Y values; the increments for calculating
the gradient; the scaling factor r; the threshold below which the gradient
is considered effectively zero; and the maximum number of iterations. All
arguments except the initial guesses should have suitable default values.
It should return a list with the following components: the final guess for
y0; the final guess for a; the final value of the MSE; the final gradient; the
number of iterations taken; a flag for whether the function stopped before
running out of iterations.

Your function must call those you wrote in earlier questions, and the
appropriate arguments to plm() should be passed on to them.

Hint: See the slides for lecture 4.

2



6. (10) What parameter estimate do you get when starting from y0 = 6611
and a = 0.15? From y0 = 5000 and a = 0.10? If these are not the same,
why do they differ? Which estimate has the lower MSE? (You may want
to experiment with different scale factors.)

7. (5) Adjusting the step size One problem with gradient descent is that
the different parameters can have very different magnitudes, and have
derivatives which differ wildly in size. This makes using the same step
scale r for all of the parameters a problem. One way out is to give each
parameter its own scaling factor1:

x(t+1) = x(t) −
[

r1 0
0 r2

]
∇f(x(t)) (3)

Write a new function, plm2, which which estimates the parameters y0 and
a of the model (1) by minimizing the mean squared error, and minimizes
the MSE according to (3) rather than simple gradient descent. It should
have almost all the same inputs as plm, except that it should take a vector
of scaling factors, not just one. It should return the same things as plm.

8. (5) If both scale factors are the same, r1 = r2, the new method is just
gradient descent. Check that plm2 works by running it from the same
starting positions as in 6, with both scale factors fixed to whatever you
used there, and verifying that it gives the same results as plm.

9. (10) Set the scale factors to be 10−2 for y0 and 10−12 for a. What are the
estimates which plm2 reaches from the two starting positions? Do they
agree? Should they? Which of all of the estimates your code has produced
seems the best, and why?

1Later on, we will see cleverer versions of this idea.

3


