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Why good statisticians learn how to program

INDEPENDENCE: otherwise, you rely on someone else always
having made exactly the right tool for you, and giving it to you

HONESTY: otherwise, you end up distorting the problem to match
the tools you happen to have
CLARITY: turning your method into something a machine can do
forces you to discipline your thinking and make it communicable;
and science is public
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How this class will work

First half: general programming, with statistical illustrations

Second half: computational tasks especially relevant to statistics,
using general programming ideas
The class will be very cumulative
∴ Keep up with the readings and exercises

36-350 Lecture 1



How this class will work

First half: general programming, with statistical illustrations
Second half: computational tasks especially relevant to statistics,
using general programming ideas

The class will be very cumulative
∴ Keep up with the readings and exercises

36-350 Lecture 1



How this class will work

First half: general programming, with statistical illustrations
Second half: computational tasks especially relevant to statistics,
using general programming ideas
The class will be very cumulative

∴ Keep up with the readings and exercises

36-350 Lecture 1



How this class will work

First half: general programming, with statistical illustrations
Second half: computational tasks especially relevant to statistics,
using general programming ideas
The class will be very cumulative
∴ Keep up with the readings and exercises

36-350 Lecture 1



Mechanics

Two lectures a week on concepts and methods
Lab to try out stuff and get immediate feedback
HW to do longer and more complicated things
Exam to check understanding
Project to show actual competence

Keep up with the readings and exercises
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Assignments, office hours, class notes, grading policies, useful links
on R: http://www.stat.cmu.edu/~cshalizi/statcomp
Lore for a grade-book and for turning in homework, check the class
website for everything else
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Books

Matloff: textbook; required; expect to have to read some of it every
week, at least for the first half

Teetor: reference; required; like the help files, but organized by
subject/task and not by command; consult it when stumped about
how to do a particular thing
Chambers: optional; much more about details of R, good
programming practices, and advanced programming techniques
Spector: optional; lots of techniques for data-manipulation
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First assignments

Homework # 1 goes out Wednesday; due at the end of Thursday
week after
Read introduction, chapters 1 and 2 of Matloff by Friday

Keep up with the readings and exercises
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The class in a nutshell: functional programming

Several models of how to write code; we will use functional
programming

2 sorts of things (objects): data and functions

Data: things like 7, “seven”, 7.000, the matrix
�

7 7 7
7 7 7

�

Functions: things like log , + (two arguments), or < (two
arguments), mod (two arguments), mean (one argument)
Function: a machine which turns input objects (arguments) into an
output object (return value), possibly with side effects, according
to a definite rule
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Programming is writing functions to transform inputs into outputs

Good programming ensures the transformation is done easily and
correctly
Machines are made out of machines; functions are made out of
functions, like f (a,b) = a2+ b2

The route to good programming is to take the big transformation
and break it down into smaller ones, and then break those down,
until you come to tasks which the built-in functions can do
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Before functions, data

Different kinds of data object

All data is represented in binary format, by bits (TRUE/FALSE,
YES/NO, 1/0)
Direct binary values: Booleans (TRUE/FALSE in R)
Integers: whole numbers (positive, negative or zero), represented by
a fixed-length block of bits
Characters: fixed-length blocks of bits, with special coding; strings =
sequences of characters
Floating point numbers: a fraction (with a finite number of bits)
times an exponent, like 1.87× 106, but in binary form
Missing or ill-defined values: NA, NaN, etc.
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More about floating-point numbers

The more bits in the fraction part, the more precision
The R floating-point data type is a double, because the
now-standard number of bits used to be twice the standard precision
(back when memory was more expensive)
a.k.a. numeric

Finite precision means arithmetic on doubles doesn’t match
arithmetic on real numbers

> 0.45 == 3*0.15
[1] FALSE

Often but not always ignorable; rounding errors tend to accumulate
in long calculations
Particularly troublesome when results should be close to zero, since
then errors could flip signs, etc.

> 0.45-3*0.15
[1] 5.551115e-17
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Operators

Unary operators: - for arithmetic negation, ! for Boolean
Binary: usual arithmetic ones, plus ones for modulo and integer
division; take two numbers and give a number:

> 7+5
[1] 12
> 7-5
[1] 2
> 7*5
[1] 35
> 7/5
[1] 1.4
> 7^5
[1] 16807
> 7 %% 5
[1] 2
> 7 %/% 5
[1] 1
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Comparisons are also binary operators; they take two objects, like
numbers, and give a Boolean:

> 7 > 5
[1] TRUE
> 7 < 5
[1] FALSE
> 7 >= 7
[1] TRUE
> 7 <= 5
[1] FALSE
> 7 == 5
[1] FALSE
> 7 != 5
[1] TRUE

You can also compare strings, but that depends on R details in
non-obvious ways (is And before or after an?)
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Finite precision leads to weirdness with floating points and exact
comparisons; all.equal() can usually deal with it:

(0.5-0.3) == (0.3-0.1)
all.equal(0.5-0.3,0.3-0.1)

Boolean operators, for “and” and “or”:

> (5 > 7) & (6*7 == 42)
[1] FALSE
> (5 > 7) | (6*7 == 42)
[1] TRUE
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More types

typeof() function returns the type
is.foo() functions return Booleans for whether the argument is of
type foo:

> typeof(7)
[1] "double"
> is.numeric(7)
[1] TRUE
> is.na(7)
[1] FALSE
> is.character(7)
[1] FALSE
> is.character("7")
[1] TRUE
> is.character("seven")
[1] TRUE
> is.na("seven")
[1] FALSE
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as.foo() tries to “cast” argument into something of type foo When
you try to combine things of different types, R will try to convert to
a type which makes sense, silently, and protest if not
> as.character(5/6)
[1] "0.833333333333333"
> as.numeric(as.character(5/6))
[1] 0.8333333
> 6*as.character(5/6)
Error in 6 * as.character(5/6) : non-numeric argument to binary operator
> 6*as.numeric(as.character(5/6))
[1] 5
> 5/6 == as.numeric(as.character(5/6))
[1] FALSE

(why is that last false?)

Remember you can compare strings:
> as.character(5/6) > 0
[1] TRUE
> as.character(5/6) > 0.5
[1] TRUE
> as.character(5/6) > 1
[1] FALSE
> as.character(5/6) > "z"
[1] FALSE
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Integers: subtleties

Creating a whole number in the console doesn’t make an integer; it
makes a double, which just so happens to have no fractional part

> is.integer(7)
[1] FALSE

This looks just the same as an integer

> as.integer(7)
[1] 7

To test for being a whole number, use round():

> round(7) == 7
[1] TRUE
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Data can have names

We can give names to data objects; these give us variables
A few are built in

> pi
[1] 3.141593

The assignment operator is <- or =

> approx.pi <- 22/7
> approx.pi
[1] 3.142857
> diameter.in.cubits = 10
> approx.pi*diameter.in.cubits
[1] 31.42857

Using names and variables makes code: easier to read for others,
easier to modify later, easier to design, less prone to errors
Avoid “magic constants”; use named variables
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Example: resource allocation (“mathematical
programming”)

Factory makes cars and trucks, using labor and steel
a car takes 40 hours of labor and 1 ton of steel
a truck takes 60 hours and 3 tons of steel
resources: 1600 hours of labor and 70 tons of steel each week

Can it make 20 trucks and 8 cars?

> 60*20 + 40*8 <= 1600
[1] TRUE
> 3*20 + 1*8 <= 70
[1] TRUE

How about 20 trucks and 9 cars?

> 60*20 + 40*9 <= 1600
[1] TRUE
> 3*20 + 1*9 <= 70
[1] TRUE

How about 20 trucks and 10 cars?
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Could just write it out again, but this is
boring and repetitive
error-prone (what if I forget to change the number of cars in
line 2, or type 69 when I mean 60?)
obscure if we come back to our work later (what are any of
these numbers?)

> hours.car <- 40; hours.truck <- 60
> steel.car <- 1; steel.truck <- 3
> available.hours <- 1600; available.steel <- 70
> output.trucks <- 20; output.cars <- 10
> hours.car*output.cars + hours.truck*output.trucks <= available.hours
[1] TRUE
> steel.car*output.cars + steel.truck*output.trucks <= available.steel
[1] TRUE

Now if something changes we just need to change the appropriate
variables, and re-run the last two lines
A step towards abstraction
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First data structure: vectors

Group related data values into one object, a data structure
A vector is a sequence of values, all of the same type

> x <- c(7, 8, 10, 45)
> x
[1] 7 8 10 45
> is.vector(x)
[1] TRUE

c() function returns a vector containing all its arguments in order
x[1] is the first element, x[4] is the 4th element, x[-4] is a vector
containing all but the fourth element
vector(length=6) returns an empty vector of length 6; helpful for
filling things up later

weekly.hours <- vector(length=5)
weekly.hours[5] <- 8
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Vector arithmetic

Operators apply to vectors “pairwise”:

> y <- c(-7, -8, -10, -45)
> x+y
[1] 0 0 0 0

Recycling: repeat elements in shorter vector when combined with
longer

> x + c(-7,-8)
[1] 0 0 3 37

Single numbers are vectors of length 1 for purposes of recycling:

> x + 1
[1] 8 9 11 46
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Can also do pairwise comparisons:

> x > 9
[1] FALSE FALSE TRUE TRUE

Note: returns Boolean vector
Boolean operators work pairwise; but written double, combines
individual values into a single Boolean:

> (x > 9) & (x < 20)
[1] FALSE FALSE TRUE FALSE
> (x > 9) && (x < 20)
[1] FALSE

To compare whole vectors, best to use identical() or all.equal:

> x == -y
[1] TRUE TRUE TRUE TRUE
> identical(x,-y)
[1] TRUE
> identical(c(0.5-0.3,0.3-0.1),c(0.3-0.1,0.5-0.3))
[1] FALSE
> all.equal(c(0.5-0.3,0.3-0.1),c(0.3-0.1,0.5-0.3))
[1] TRUE
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Functions on vectors

Lots of functions take vectors as arguments:
mean(), median(), sd(), var(), max(), min(),
length(), sum() all return single numbers
sort() returns a new vector
hist() takes a vector of numbers and produces a histogram, a
highly structured object, with the side-effect of making a plot
similarly ecdf() produces a cumulative-density-function object
summary() gives a five-number summary of numerical vectors
any() and all() are useful on Boolean vectors
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Addressing vectors
Vector of indices:

> x[c(2,4)]
[1] 8 45

Vector of negative indices

> x[c(-1,-3)]
[1] 8 45

(why not 8 10?)
Boolean vector:

> x[x>9]
[1] 10 45
> y[x>9]
[1] -10 -45

which() takes a Boolean vector and gives a vector of indices for the
TRUE values; useful with tests:

> places <- which(x > 9)
> y[places]
[1] -10 -45
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Named components

You can give names to elements or components of vectors

> names(x) <- c("v1","v2","v3","fred")
> names(x)
[1] "v1" "v2" "v3" "fred"
> x[c("fred","v1")]
fred v1

45 7

note the labels; not actually part of the value
names(x) is just another vector (of characters):

> names(y) <- names(x)
> sort(names(x))
[1] "fred" "v1" "v2" "v3"
> which(names(x)=="fred")
[1] 4
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Back to resource allocation

Use vectors to group thing together

> hours <- c(hours.car,hours.truck)
> steel <- c(steel.car,steel.truck)
> output <- c(output.cars,output.trucks)
> available <- c(available.hours,available.steel)

could make it

> all(hours[1]*output[1]+hours[2]*output[2] <= available[1],
+ steel[1]*output[1]+steel[2]*output[2] <= available[2])
[1] TRUE

or even

> all(c(sum(hours*output), sum(steel*output)) <= available)
[1] TRUE
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. . . but then we’d have to remember the ordering of components in
each vector, and always use that order
Use names instead:

> names(hours) <- c("cars", "trucks")
> names(steel) <- names(hours); names(output) <- names(hours)
> names(available) <- c("hours","steel")
> all(hours["cars"]*output["cars"] + hours["trucks"]*output["trucks"] <=
+ available["hours"],
+ steel["cars"]*output["cars"] + steel["trucks"]*output["trucks"] <=
+ available["steel"])
[1] TRUE
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Better, but not as concise. Now try:

> needed <- c(sum(hours*output[names(hours)]),
+ sum(steel*output[names(steel)]))
> names(needed) <- c("hours","steel")
> all(needed <= available[names(needed)])
[1] TRUE

Not perfect programming, but better
What would we have to change to start allowing for motorcycles?
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Vector structures, starting with arrays

Most more complicated structures in R are made by adding bells and
whistles to vectors, so “vector structures”
Most useful: arrays

> x.arr <- array(x,dim=c(2,2))
> x.arr

[,1] [,2]
[1,] 7 10
[2,] 8 45

Note: filled the first column, then the 2nd; dim tells it how many
rows and columns
Can have 3,4, . . .n dimensional arrays; dim is then a vector of length
n
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Some properties of the array:

> dim(x.arr)
[1] 2 2
> is.vector(x.arr)
[1] FALSE
> is.array(x.arr)
[1] TRUE
> typeof(x.arr)
[1] "double"
> str(x.arr)
num [1:2, 1:2] 7 8 10 45

> attributes(x.arr)
$dim
[1] 2 2

Note: typeof() returns the type of the elements
Note: str() gives the structure: here, a numeric array, with two
dimensions, both indexed 1–2, and then the actual numbers
Exercise: try all these with x
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Accessing and operating on arrays

Can access a 2-D array either by pairs of indices or by the underlying
vector:

> x.arr[1,2]
[1] 10
> x.arr[3]
[1] 10

Omitting an index means “all of it”:

> x.arr[c(1:2),2]
[1] 10 45
> x.arr[,2]
[1] 10 45

36-350 Lecture 1



Using a vector-style function on a vector structure will go down to
the underlying vector, unless the function is set up to handle arrays
specially:

> which(x.arr > 9)
[1] 3 4

Many functions do preserve array structure:

> y.arr <- array(y,dim=c(2,2))
> y.arr + x.arr

[,1] [,2]
[1,] 0 0
[2,] 0 0

Others specifically act on each row or column of the array
separately:

> rowSums(x.arr)
[1] 17 53

We will see a lot more of this idea
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Summary

This class will teach you how to program for data analysis
We write programs by composing functions to manipulate data
Basic data types (Booleans, characters, numbers) and their functions
Basic data structures (vectors, arrays) and their functions
Using variables, rather than constants, is the first step of abstraction
Next time, more data structures: matrices, lists, data frames,
structures of structures
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