
Statistical Computing (36-350)
Lecture 2: More Data Structures

Cosma Shalizi

29 August 2012

36-350 Lecture 2

Admin Stuff

Homework 1: Out today
Office hours: Wednesdays, 11:30–1:30, Baker Hall 229C, or by
appointment

36-350 Lecture 2

Agenda

Matrices
Lists
Data frames
Structures of structures

36-350 Lecture 2

Recall from last time

Data has different types or classes
Data structures group related values
Vectors are the basic data structure: sequence of values of the same
type
> x <- c(8, 7, 10, 45)
> x[1]
[1] 8
> x[-4]
[1] 8 7 10
> x[x>9]
[1] 10 45

Vector structures are vectors + extra attributes
Multi-dimensional arrays are vector structures: access through the
fancy multiple indices, or through the underlying vector
> x.arr <- array(x,dim=c(2,2))
> x.arr

[,1] [,2]
[1,] 8 10
[2,] 7 45
> x.arr[2,2]
[1] 45
> x.arr[4]
[1] 45

36-350 Lecture 2

Running example: resource allocation (continued)

Factory can make cars or trucks
Each car takes 40 hours of labor and 1 ton of steel
Each truck takes 60 hours of labor and 3 tons of steel
1600 hours and 70 tons per week
How many cars and trucks can it make each week?
Can it make (say) 20 trucks and 10 cars per week?
Motivation: step towards linear (mathematical) programming and
optimization

36-350 Lecture 2

Matrices

In R, a matrix is a specialization of a 2D array

> factory <- matrix(c(40,1,60,3),nrow=2)
> factory

[,1] [,2]
[1,] 40 60
[2,] 1 3
> is.array(factory)
[1] TRUE
> is.matrix(factory)
[1] TRUE

could also specify ncol, and/or byrow=TRUE to fill by rows.
Element-wise operations with the usual arithmetic and comparison
operators (e.g., factory/3)
Compare whole matrices with identical() or all.equal()

36-350 Lecture 2

Matrix multiplication has a special operator:

> six.sevens <- matrix(rep(7,6),ncol=3)
> six.sevens

[,1] [,2] [,3]
[1,] 7 7 7
[2,] 7 7 7
> factory %*% six.sevens # [2x2] * [2x3]

[,1] [,2] [,3]
[1,] 700 700 700
[2,] 28 28 28
> six.sevens %*% factory # [2x3] * [2x2]
Error in six.sevens %*% factory : non-conformable arguments

Multiplying by a vector:

> output <- c(10,20)
> factory %*% output

[,1]
[1,] 1600
[2,] 70
> output %*% factory

[,1] [,2]
[1,] 420 660

R silently casts the vector as a row or column matrix
36-350 Lecture 2

Matrix transpose:

> t(factory)
[,1] [,2]

[1,] 40 1
[2,] 60 3

Matrix determinant:

> det(factory)
[1] 60

Extracting or replacing the diagonal:

> diag(factory) # What’s the diagonal of the matrix?
[1] 40 3
> diag(factory) <- c(35,4) # Change it
> factory # See that it changed

[,1] [,2]
[1,] 35 60
[2,] 1 4
> diag(factory) <- c(40,3) # Set it back for later

36-350 Lecture 2

Creating a diagonal matrix or an identity matrix:

> diag(c(3,4))
[,1] [,2]

[1,] 3 0
[2,] 0 4
> diag(2)

[,1] [,2]
[1,] 1 0
[2,] 0 1

Inverting a matrix:

> solve(factory)
[,1] [,2]

[1,] 0.05000000 -1.0000000
[2,] -0.01666667 0.6666667
> factory %*% solve(factory) # Check that this does what I claim

[,1] [,2]
[1,] 1 0
[2,] 0 1

36-350 Lecture 2

Why is it called solve()?
Solving the linear system A~x=~b, for unknown vector~x:

> available <- c(1600,70)
> solve(factory,available)
[1] 10 20
> factory %*% solve(factory,available)

[,1]
[1,] 1600
[2,] 70

36-350 Lecture 2

Names in Matrices

We can name either rows or columns or both, with rownames() and
colnames()
These are just character vectors, and we use the same function to get
and to set their values
Names help us understand what we’re working with
Names can be used to coordinate different objects

36-350 Lecture 2

Example: someone gets the order of cars and trucks wrong

> rownames(factory) <- c("labor","steel")
> colnames(factory) <- c("cars","trucks")
> factory

cars trucks
labor 40 60
steel 1 3
> output <- c(20,10)
> names(output) <- c("trucks","cars")
> available <- c(1600,70)
> names(available) <- c("labor","steel")
> factory %*% output # But we’ve got cars and trucks mixed up!

[,1]
labor 1400
steel 50
> factory %*% output[colnames(factory)]

[,1]
labor 1600
steel 70
> all(factory %*% output[colnames(factory)] <= available[rownames(factory)])
[1] TRUE

Notice: Last lines don’t have to change if we add motorcycles as
output or rubber and glass as inputs (abstraction again)

36-350 Lecture 2

Doing the same thing to each row or column

Take the mean: rowMeans(), colMeans(): input is matrix, output is
vector. Also rowSums(), etc.
summary(): Applies vector-style summary to each column
apply(), takes 3 arguments: matrix, then 1 for rows and 2 for
columns, the name of the function to apply to each

> rowMeans(a.matrix)
[1] 22.5 6.0
> apply(a.matrix,1,mean)
[1] 22.5 6.0

36-350 Lecture 2

Lists

Sequence of values, not necessarily all of the same type

> my.distribution <- list("exponential",7,FALSE)
> my.distribution
[[1]]
[1] "exponential"

[[2]]
[1] 7

[[3]]
[1] FALSE

Most of things which you can do with vectors you can also do with
lists

36-350 Lecture 2

Accessing bits of lists

Access: can use [] as with vectors
or use [[]], but only with a single index (and it drops names and
structures)

> is.character(my.distribution)
[1] FALSE
> is.character(my.distribution[[1]])
[1] TRUE
> my.distribution[2]^ 2
Error in my.distribution[2]^2 : non-numeric argument to binary operator
> my.distribution[[2]]^2
[1] 49

(What happens when you try [[]] on a vector?)

36-350 Lecture 2

Add to lists with c() (also works with vectors):

> my.distribution <- c(my.distribution,7)
> my.distribution
[[1]]
[1] "exponential"
[[2]]
[1] 7
[[3]]
[1] FALSE
[[4]]
[1] 7

Chop off the end of a list by setting length to something smaller
(also works with vectors):

> length(my.distribution)
[1] 4
> length(my.distribution) <- 3
> my.distribution
[[1]]
[1] "exponential"
[[2]]
[1] 7
[[3]]
[1] FALSE

36-350 Lecture 2

Names in lists

We can name some or all of the elements of a list

> names(my.distribution) <- c("family","mean","is.symmetric")
> my.distribution
$family
[1] "exponential"
$mean
[1] 7
$is.symmetric
[1] FALSE

Then we access by name, using $ (which removes names and
structure):

> my.distribution$family
[1] "exponential"
> my.distribution[["family"]]
[1] "exponential"
> my.distribution["family"]
$family
[1] "exponential"

36-350 Lecture 2

Using names when we make the list:

> another.distribution <- list(family="gaussian",mean=7,sd=1,is.symmetric=TRUE)
> another.distribution
$family
[1] "gaussian"
$mean
[1] 7
$sd
[1] 1
$is.symmetric
[1] TRUE

36-350 Lecture 2

or after:

> my.distribution$was.estimated <- FALSE
> my.distribution[["last.updated"]] <- "2011-08-30"
> my.distribution
$family
[1] "exponential"
$mean
[1] 7
$is.symmetric
[1] FALSE
$was.estimated
[1] FALSE
$last.updated
[1] "2011-08-30"

Remove an entry in the list by assigning it the value NULL; try
my.distribution$was.estimated<-NULL

36-350 Lecture 2

Key-Value Pairs

Lists give us a way to store and look data up by name rather than
number (key-value pairs, dictionary, associative array, hash)
If all our distributions have a component named family, we can
look it up by name without caring where it is in the list
(More abstraction)

36-350 Lecture 2

Data frames

Data frame = classic data table, with n rows for cases, and p columns
for variables
Lots of the really-statistical parts of R presume data frames
Not just a matrix because every column can be of a different type
A hybrid of a matrix and a list; can access columns either like a
matrix or like named parts of a list
Many functions for matrices also work on data frames (rowSums(),
summary(), apply(), . . .)
Cannot do matrix multiplication on a data frame even if it’s all
numbers

36-350 Lecture 2

Example:

> a.matrix <- matrix(c(35,8,10,4),nrow=2)
> colnames(a.matrix) <- c("v1","v2")
> a.matrix

v1 v2
[1,] 35 10
[2,] 8 4
> a.matrix$v1 # The $ access operator doesn’t work on a matrix
Error in a.matrix$v1 : $ operator is invalid for atomic vectors
> a.data.frame <- data.frame(a.matrix,logicals=c(TRUE,FALSE))
> a.data.frame

v1 v2 logicals
1 35 10 TRUE
2 8 4 FALSE
> a.data.frame$v1 # But $ does work on a data frame
[1] 35 8
> a.data.frame[,"v1"]
[1] 35 8
> a.data.frame[1,]

v1 v2 logicals
1 35 10 TRUE
> colMeans(a.data.frame)

v1 v2 logicals
21.5 7.0 0.5

36-350 Lecture 2

We can add rows or columns to an array or data-frame with rbind()
and cbind(), but be careful about forced type conversions

> rbind(a.data.frame,list(v1=-3,v2=-5,logicals=TRUE))
v1 v2 logicals

1 35 10 TRUE
2 8 4 FALSE
3 -3 -5 TRUE
> rbind(a.data.frame,c(3,4,6))

v1 v2 logicals
1 35 10 1
2 8 4 0
3 3 4 6

36-350 Lecture 2

Structures of structures

Lists of lists, lists of vectors, lists of lists of lists of vectors. . .
This recursion lets us build arbitrarily complicated data structures
from the basic ones
Lots of complicated objects are lists of data structures

36-350 Lecture 2

Example: Eigenstuff

eigen() finds eigenvalues and eigenvectors of a matrix
return value is a list of a vector (of eigenvalues) and a matrix (of
eigenvectors)

> eigen(factory)
$values
[1] 41.556171 1.443829

$vectors
[,1] [,2]

[1,] 0.99966383 -0.8412758
[2,] 0.02592747 0.5406062

> class(eigen(factory))
[1] "list"
> str(eigen(factory))
List of 2
$ values : num [1:2] 41.56 1.44
$ vectors: num [1:2, 1:2] 0.9997 0.0259 -0.8413 0.5406

36-350 Lecture 2

With complicated objects, you can access parts of parts (of parts. . .):

> factory %*% eigen(factory)$vectors[,2]
[,1]

[1,] -1.2146583
[2,] 0.7805429
> eigen(factory)$values[2] * eigen(factory)$vectors[,2]
[1] -1.2146583 0.7805429
> eigen(factory)$values[2]
[1] 1.443829
> eigen(factory)[[1]][[2]] # NOT [[1, 2]]
[1] 1.443829

36-350 Lecture 2

Summary

Matrices act like you’d hope they would
Lists let us combine different types of data
Data frames are hybrids of matrices and lists, for classic tabular
data
Use names of components to make data more meaningful and
control access
Recursion lets us build complicated structures

36-350 Lecture 2

