
Statistical Computing (36-350)
Lecture 3: Flow Control

Cosma Shalizi

5 September 2012

36-350 Lecture 3

Agenda

Conditionals: Switching between doing different things
Iteration: Doing similar things many times
Vectorizing: Avoiding explicit iteration

ABSOLUTELY ESSENTIAL READING FOR FRIDAY: Sec. 7.1 of the
textbook
MERELY USEFUL READING: Chapters 3–5, “extended example”
sections optional

36-350 Lecture 3

Conditionals

Have the computer decide which calculation to do, based on the data
Mathematically:

|x|=
�

x if x≥ 0
−x if x< 0

or

ψ(x) =
�

x2 if |x| ≤ 1
2|x| − 1 if |x|> 1

(EXERCISE: plot ψ(x) in R)
or

If the country code is not “US”, multiply all prices by
current exchange rate

36-350 Lecture 3

Simplest conditional: if

if (x >= 0) {
x

} else {
-x

}

The condition in if needs to give one TRUE or FALSE value
else clause is optional
EXERCISE: What if x is a numeric vector?

36-350 Lecture 3

What Is Truth?

Any valid numerical value except 0 counts as TRUE; 0 is FALSE;
most non-numerical values choke:

> if(1) {"Truth!"} else {"Falsehood!"}
[1] "Truth!"
> if(-1) {"Truth!"} else {"Falsehood!"}
[1] "Truth!"
> if(0) {"Truth!"} else {"Falsehood!"}
[1] "Falsehood!"
> if("TRUE") {"Truth!"} else {"Falsehood!"}
[1] "Truth!"
> if("TRUTH") {"Truth!"} else {"Falsehood!"}
Error in if ("TRUTH") { : argument is not interpretable as logical
> if("c") {"Truth!"} else {"Falsehood!"}
Error in if ("c") { : argument is not interpretable as logical
> if(NULL) {"Truth!"} else {"Falsehood!"}
Error in if (NULL) { : argument is of length zero
> if(NA) {"Truth!"} else {"Falsehood!"}
Error in if (NA) { : missing value where TRUE/FALSE needed
> if(NaN) {"Truth!"} else {"Falsehood!"}
Error in if (NaN) { : argument is not interpretable as logical

36-350 Lecture 3

Single or Double?

Boolean operators & and | are like arithmetic operators: act
elementwise on vectors, every term evaluated

> c(TRUE,TRUE) & c(TRUE,FALSE)
[1] TRUE FALSE

Flow control wants: single Boolean values, don’t calculate what we
don’t need
Solution: && and ||
Go left to right, stop when answer is fixed

> (0>0) & ("c"+1)
Error in "c" + 1 : non-numeric argument to binary operator
> (0>0) && ("c"+1)
[1] FALSE

Now imagine some complicated calculation for the second term; R
skips it because it doesn’t matter!

36-350 Lecture 3

Applied to vectors, the double-Booleans take the first element of
each

> c(FALSE,FALSE) | c(TRUE,FALSE)
[1] TRUE FALSE
> c(FALSE,FALSE) || c(TRUE,FALSE)
[1] TRUE
> c(FALSE,FALSE) || c(FALSE,TRUE)
[1] FALSE

Generally: Use && and || for flow control, try not to give them
vector arguments

36-350 Lecture 3

Nested ifs

Conditionals can nest arbitrarily deeply:

if (x^2 < 1) {
x^2

} else {
if (x >= 0) {

x
} else {

-x
}

}

36-350 Lecture 3

switch

Nesting if/else clauses can handle any conditional, but it’s
tiresome
A simplification is switch: give a variable to select on, and then
values for each option:

switch(type.of.summary,
mean=mean(x),
median=median(x),
histogram=hist(x),
"I don’t understand")

EXERCISE: Set x <- c(5,7,8) and run this with type.of.summary
set to, successively, "mean", "median", "histogram" and "mode".

36-350 Lecture 3

Iteration: Doing Similar Things Multiple Times

Repeat the same, or a very similar, action a certain number of times:

n <- 10
table.of.logarithms <- vector(length=n)
table.of.logarithms
for (i in 1:n) {

table.of.logarithms[i] <- log(i)
}
table.of.logarithms

for increments a counter (here i) along a vector (here 1:n), and
loops through the body until it runs through the vector
N.B., there is a better way to do this particular job

36-350 Lecture 3

Combining for and if

x <- c(-5,7,-8,0)
y <- vector(length=length(x))
for (i in 1:length(x)) {

if (x[i] >= 0) {
y[i] <- x[i]

} else {
y[i] <- -x[i]

}
}
y # now c(5,7,8,0)

N.B., there is a better way to do this particular job

36-350 Lecture 3

while: Conditional Iteration

while (max(x) > (1+1e-06)) {
x <- sqrt(x)

}

Condition in the argument to while must be a single
TRUE/FALSE value, as with if
Loop is executed over and over until the condition is FALSE
⇒ goes forever if the condition is always TRUE
⇒ never begins unless the condition starts as TRUE
EXERCISE: How would you replace a for loop with a while loop?

36-350 Lecture 3

Unconditional iteration

repeat {
print("Help! I am Dr. Morris Culpepper, trapped in an endless loop!")

}

More useful:

repeat {
if (watched) {

next()
}
print("Help! I am Dr. Morris Culpepper, trapped in an endless loop!")
if (rescued) {

break()
}

}

Always enters the loop at least once, even if rescued is true

break() exits the loop; next() skips the rest of the body and goes
back into the loop (both work on for and while too)

EXERCISE: How would you replace while with repeat?

36-350 Lecture 3

Allocating Resources by Random Tinkering

Recall: our linear factory makes cars and trucks from labor and steel
Available resources (1600 hours, 70 tons) are completely employed
by making 10 cars and 20 trucks
Exactly solved by linear algebra
Suppose didn’t know linear algebra, and we didn’t care if we used all
the resources so long as the slack wasn’t very large
Find solution by starting with an arbitrary plan and tinkering with
it until it meets constraints

factory <- matrix(c(40,1,60,3),nrow=2,
dimnames=list(c("labor","steel"),c("cars","trucks")))

available <- c(1600,70); names(available) <- rownames(factory)
slack <- c(8,1); names(slack) <- rownames(factory)
output <-c(30,20); names(output) <- colnames(factory)

36-350 Lecture 3

How it works

passes <- 0 # How many times have we been around the loop?
repeat {

passes <- passes + 1
needed <- factory %*% output # What do we need for that output level?
If we’re not using too much, and are within the slack, we’re done
if (all(needed <= available) &&

all((available - needed) <= slack)) {
break()

}
If we’re using too much of everything, cut back by 10%
if (all(needed > available)) {

output <- output * 0.9
next()

}
If we’re using too little of everything, increase by 10%
if (all(needed < available)) {

output <- output * 1.1
next()

}
If we’re using too much of some resources but not others, randomly
tweak the plan by up to 10%
output <- output * (1+runif(length(output),min=-0.1,max=0.1))

}

36-350 Lecture 3

Typical output, after starting from 30 cars and 20 trucks:

> round(output,1)
cars trucks
10.4 19.7

> round(needed,1)
[,1]

labor 1596.1
steel 69.4
> passes
[1] 3452

i.e., it adjusted the plan 3452 times
vs. 10 cars, 20 trucks at full utilization
Homework will examine and improve this

36-350 Lecture 3

Avoiding Iteration

R gives a lot of ways to avoid iteration, by acting on whole objects
Conceptually clearer
Simpler code
Faster (sometimes a little, sometimes drastically)

Lots of these are about vectorizing calculations

36-350 Lecture 3

We have already seen this!

How many programming languages add the vectors a and b:

c <- vector(length(a))
for (i in 1:length(a)) {

c[i] <- a[i] + b[i]
}

How R adds the vectors a and b:

c <- a+b

Advantages:
Clarity: the syntax is about what we are doing

Abstraction: the syntax hides how the computer does it
The same syntax works for numbers, vectors, matrices, 13-dimensional arrays

Concision: one line vs. four

Speed: modifying big vectors over and over is slow in R, this gets passed off to
optimized low-level code (usually the least important advantage)

Disadvantages:
You have to learn to think about whole objects, not just parts

Code tends to not look very intimidating

36-350 Lecture 3

Vectorized Calculations

Many functions are set up to vectorize automatically

abs(x) # Absolute value of each element in x
log(x) # Logarithm of each element in x

Conditionality with ifelse():

ifelse(x<0,-x,x) # Pretty much the same as abs(x)
ifelse(x^2>1,abs(x),x^2)

First argument a Boolean vector, then pick from the second or third
arguments as TRUE or FALSE
See also apply() from last time
Will come back to this in great detail later

36-350 Lecture 3

Repeating

rep(x,n): Repeat x, n times
seq(): Produce a sequence; useful, flexible, see textbook, sec. 2.4.4,
and recipe 2.7 in the cookbook

36-350 Lecture 3

Arrays with Repeated Structure

All combinations of values from vectors: expand.grid

> expand.grid(v1=c("lions","tigers"),v2=c(0.1,1.1))
v1 v2

1 lions 0.1
2 tigers 0.1
3 lions 1.1
4 tigers 1.1

Makes a data frame so can combine different types
More than two input vectors is fine

36-350 Lecture 3

Arrays with Repeated Structure (cont’d.)

Combinations of inputs to a function: outer

> outer(c(1,3,5),c(2,3,7),‘*‘)
[,1] [,2] [,3]

[1,] 2 3 7
[2,] 6 9 21
[3,] 10 15 35

N.B.: Special quotation marks for multiplication sign; similarly for
other operators
This one gets its own abbreviated operator:

c(1,3,5) %o% c(2,3,7)

Any two-argument vectorized function works:

> outer(c(1024,1000),c(2,10),log)
[,1] [,2]

[1,] 10.000000 3.0103
[2,] 9.965784 3.0000

(What is the second argument of log?)

36-350 Lecture 3

replicate(): Do the exact same thing many times
Why would we ever want to do that? When our code is somewhat
random

Take a sample of size 1000 from the standard exponential
rexp(1000,rate=1)
Take the mean of such a sample
mean(rexp(1000,rate=1))
Draw 1000 such samples, and take the mean of each one
replicate(1000,mean(rexp(1000),rate=1))
Plot the histogram of sample means
hist(replicate(1000,mean(rexp(1000,rate=1))))

Equivalent to that last, but dumb
sample.means <- vector(length=1000)
for (i in 1:length(sample.means)) {

sample.means[i] <- mean(rexp(1000,rate=1))
}
hist(sample.means)

36-350 Lecture 3

Summary

1 Conditions: Use if ...else and switch() to let the data pick
different calculations or actions

2 Iteration: Use for(), while() and repeat() to do similar
things a certain number of times, or while conditions hold, or
until conditions are met

3 Vectorizing: Explicit iteration is often unclear, slow, and
needlessly detailed; avoid it by working with whole objects

36-350 Lecture 3

