
Statistical Computing (36-350)
Lecture 6: Top-Down Design

Cosma Shalizi

18 September 2012

36-350 Lecture 6

Agenda

Top-down design of programs
Example: Linear regression in R

ESSENTIAL READING FOR FRIDAY: Sec. 7.6 and 7.9 of the
textbook

36-350 Lecture 6

Top-Down Design

Start with the big-picture view of the problem
Break the problem into a few big parts
Figure out how to fit the parts together
Go do this for each part

36-350 Lecture 6

The Big-Picture View

Resources: what information is available as part of the problem?
(Usually arguments)
Requirements: what information do we want as part of the solution?
(Usually return values)
What do we have to do to transform the problem statement into a
solution?

36-350 Lecture 6

Breaking Into Parts

Try to break the calculation into a few (say ≤ 5) parts
Bad: write 500 lines of code, chop it into five 100-line blocks
Good: each part is an independent calculation, using separate
data

Advantages of the good way:
More comprehensible to human beings
Easier to improve and extend (respect interfaces)

36-350 Lecture 6

Put the Parts Together

Assume that you can solve each part, and their solutions are
functions
Write top-level code for the function which puts those steps
together:

Not actual code
big.job <- function(lots.of.arguments) {

intermediate.result <- first.step(some.of.the.args)
final.result <- second.step(intermediate.result,rest.of.the.args)
return(final.result)

}

The sub-functions don’t have to be written when you declare the main function, just when

you run it

36-350 Lecture 6

What About the Sub-Functions?

Recursion: Because each sub-function solves a single well-defined
problem, we can solve it by top-down design
The step above tells you what the arguments are, and what the
return value must be (interface)
The step above doesn’t care how you turn inputs to output
(internals)
Stop when we hit a sub-problem we can solve in a few steps with
built-in functions

36-350 Lecture 6

credit: http://cheezburger.com/View/4517375744

36-350 Lecture 6

http://cheezburger.com/View/4517375744

Thinking Algorithmically

Top-down design only works if you understand
the problem, and
a systematic method for solving the problem

∴ it forces you to think algorithmically
First guesses about how to break down the problem are often wrong
but functional approach contains effects of changes

∴ don’t be afraid to change the design

36-350 Lecture 6

Example: Coding up linear regression

Basic form of the model:

Y =XTβ+noise

Least-squares estimation: find β̂ such that the mean squared error
n−1∑n

i=1 (yi− xT
i β)

2 is minimized
Solution:

β̂= (xT x)−1xT y

where x is n× p matrix of inputs, y is n× 1 matrix of responses
n−1(xT x) is covariance matrix of X
n−1xT y is vector of covariances of X and Y

36-350 Lecture 6

How R Does This

The lm (linear model) function:

lm(formula,data, [[many other options]])

formula: something like Hwt ˜ 1 + Sex + Bwt + Bwt:Sex
data: Data frame to look for the variables in the formula in
Return value is an lm object, with coefficients, standard errors,
residuals, . . .
How would we write this?

36-350 Lecture 6

What’s the top level of the design?

1 Prepare design matrix x from formula and data
2 Prepare response vector y from formula and data
3 Calculate coefficients from x and y
4 Prepare extra information (residuals, standard errors, etc.) from

x, y and coefficients
5 Return everything

Now go do each of the top-level steps (in any order)

36-350 Lecture 6

Calculating the Coefficients

Remember the OLS estimator:

β̂= (xT x)−1xT y

This is a one-liner in R:

beta.hat = solve(t(X) %*% X) %*% t(X) %*% Y

(remember solve(A) returns A−1)

but what if xT x is singular?

36-350 Lecture 6

Making the Design Matrix

Roughly, each term on the RHS of the formula leads to a column in
X

1 Plain variables (like Bwt) need a column each
2 An intercept needs a column of 1s
3 Dummy or indicator variables need binary columns (like Sex)
4 Interactions need a column of products (like Bwt:Sex)
5 Transformations (say log)

Use names on these columns to match formula terms, so these carry
through to the coefficients
Making Y is similar ∴ lots of common sub-sub-functions
. . .

36-350 Lecture 6

Summary

1 Top-down design is a recursive heuristic for coding
1 Split your problem into a few sub-problems; write code tying

their solutions together
2 If any sub-problems still need solving, go write their functions

2 Leads to many short functions, each solving one well-defined
problem

3 Disciplines you to think algorithmically

36-350 Lecture 6

