
Statistical Computing (36-350)
Lecture 7: Testing

Cosma Shalizi

19 September 2012

36-350 Lecture 9

Agenda

Why test?
Testing answers vs. cross-checking
Software testing vs. hypothesis testing
Combining testing and programming

36-350 Lecture 9

Why Test Your Program?

Your code implements a method for solving a problem
You would like the solution to be correct
How do you know that you can trust it?
Answer: you test for correctness
Test both the whole program (“functional” tests) and components
(“unit” tests)
distinction blurs for us

36-350 Lecture 9

Procedure vs. Substance

Do we get the right answer (substance)
vs.
Do we get an answer in the right way (procedure)?
These go back and forth with each other:
we trust the procedure because it gives the right answer
we trust the answer because it came from a good procedure
This only seems like a vicious circle

Programming means making a procedure, so we check substance
also: respect the interface

36-350 Lecture 9

Testing for particular cases

Test cases with known answers

a <- runif(1)
add(2,3) == 5
add(a,0) == a
add(a,-a) == 0
cor(c(1,-1,1,1),c(-1,1,-1,1)) = -1/sqrt(3)

36-350 Lecture 9

Testing by cross-checking

Compare alternate routes to the same answer

a <- runif(n=3,min=-10,max=10)
add(a[1],a[2]) == add(a[2],a[1])
add(add(a[1],a[2]),a[3]) == add(a[1],add(a[2],a[3]))
add(a[3]*a[1],a[3]*a[2]) == a[3]*add(a[1],a[2])
x <- runif(10,-10,10)
f <- function(x) {x^2*exp(-x^2)}
g <- function(x) {2*x*exp(-x^2) -2* x^3*exp(-x^2)}
isTRUE(all.equal(derivative(f,x), g(x)))

36-350 Lecture 9

If this seems too unstatistical...

x <- runif(10)
a <- runif(1)
cor(x,x) == 1
cor(x,-x) == -1
cor(x,a*x) == 1
all(pnorm(0,mean=0,sd=x) == 0.5)
pnorm(x,mean,sd) == pnorm((x-mean)/sd,0,1)
pnorm(x,0,1) == 1-pnorm(-x,0,1)
pnorm(qnorm(p)) == p
qnorm(pnorm(x)) == x

of course with finite precision we don’t really want to insist that
these be exact! (look at the example earlier with all.equal)

36-350 Lecture 9

Software Testings vs. Hypothesis Testing

Statistical hypothesis testing: risk of false alarm (size) vs. probability
of detection (power)
(type I vs. type II errors)

Software tests: no false alarms allowed (false alarm rate = 0)
Has to reduce power to detect errors
so code can pass all our tests and still be wrong
but we can direct the power to detect certain errors
including where the error lies (if we test small pieces)

36-350 Lecture 9

Combining Testing and Coding

Variety of tests⇔more power to detect errors⇒more
confidence when tests are passed
∴ For each function, build a battery of tests
Step through the tests, record which failed
Make it easy to add tests
Make it easy to run tests
∴ Bundle tests together into a function, which tests another
function

36-350 Lecture 9

Testing Considerations

Tests should only involve the interface, not the internal
implementation (substance, not procedure)
Tests should control inputs; may require using stubs/dummy input
generators:

foo <- function(x,y) {
z <- bar(x); return(baz(y,z))

}

bar <- function(x) {
stuff involving x

}

test.foo <- function() {
bar <- function(x) {

generate a plausible value for bar(), independent of x
}
return(foo(121,"philomena") == "genevieve")

}

36-350 Lecture 9

The Cycle

After making changes to a function, re-run its tests
(and those of functions which depend on it)
If anything’s (still) broken, fix it
If not, go on your way
When you meet a new error, write a new test
When you add a new capacity, write a new test
Make sure tests only involve the interface

36-350 Lecture 9

A Ratchet

When we have a version of the code which we are confident gets
some cases right, keep it around (under a separate name)
Now compare new versions to the old, on those cases
Keep debugging until the new version is at least as good as the old
Software engineers sometimes call this “regression testing”, but they don’t mean statistical regressions

36-350 Lecture 9

Test-Driven Development

Start: an idea about what the program should do
Idea is vague and unhelpful
Make it clear and useful by writing tests for success
Tests come first, then the program
Modify code until it passes all the tests
When you find a new error, write a new test
When you add a new capacity, write a new test
When you change your mind about the goal, change the tests
By the end, the tests specify what the program should do, and the
program does it

36-350 Lecture 9

Awkward Cases

Boundary cases, “at the edge” of something, or non-standard inputs
What should these be?

add(x,NA) # NA, presumably
add("a","b") # NA, or error message?
divide(10,0) # Inf, presumably
divide(0,0) # NA?
var(1) # NA? error?
cor(c(1,-1,1,-1),c(-1,1,NA,1)) # NA? -1? -1 with a warning?
cor(c(1,-1,1,-1),c(-1,1,"z",1)) # NA? -1? -1 with a warning?
cor(c(1,-1),c(-1,1,-1,1)) # NA? 0? -1?

Pinning down awkward cases helps specify function

36-350 Lecture 9

Pitfalls

Writing tests takes time
Running tests takes time
Tests have to be debugged themselves
Tests can provide a false sense of security
There are costs to knowing about problems (people get upset,
responsibility to fix things, etc.)

36-350 Lecture 9

Advanced Tool: RUnit

Writing many tests for many functions is very repetitive
Repetitive tasks should be automated through functions
The RUnit package on CRAN gives tools and functions to simplify
writing unit tests
Useful but optional; read the “Vignette” first, before the manual or
documentation

36-350 Lecture 9

Summary

Trusting software means testing it for correctness, both of
substance and of procedure
Software testing is an extreme form of hypothesis testing: no
false positives allowed, so any power to detect errors has to be
very focused
∴Write and use lots of tests; add to them as we find new errors
Cycle between writing code and testing it

Next time: debugging

36-350 Lecture 9

