
Statistical Computing (36-350)
Lecture 8: Debugging

Cosma Shalizi

24 September 2012

36-350 Lecture 8

Agenda

Characterizing the error
Localizing the error
Program for debugging

READING FOR THE WEEK: Chapter 13 of Matloff

36-350 Lecture 8

Bugs

The machine does something wrong
The original bugs were caused by moths trapped in relays

Grace Hopper, 1947; from http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.htm

Bugs are ubiquitous in programs
Debugging is an essential and unending part of programming

36-350 Lecture 8

http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.htm

Stages of Debugging

Debugging is largely about differential diagnosis
figuring out what has gone wrong, by eliminating other possibilities

1 Characterize the bug: figure out exactly what is going wrong
2 Localize the bug: find where the code introduces the mistake
3 Modify the code; check whether the bug has been eliminated;

check that you haven’t introduced new error

36-350 Lecture 8

Characterizing the Bug

Make the error reproducible
Can we always get the error when re-running the same code and
values?
If we start the same code in a clean copy of R, does the same
thing happen?

Bound the error
How much can we change the inputs and get the same error? A
different error?
For what inputs (if any) does the bug go away?
How big is the error?

Get more information
Add extra output (e.g., number of optimization steps, did the
loop converge, final value of optimized function)
Much of what’s under localization below

36-350 Lecture 8

Localizing the Bug

The problem may be a diffused all-pervading wrongness, but often
it’s a lot more localized; it helps to know where!
Tools: traceback (where did an error message come from?); print,
warning, stopifnot (messages from the code as it goes)
Trying controlled inputs
Interactive debugging

36-350 Lecture 8

traceback()

Traces back through all the function calls leading to the last error
Start your attention at the first of these functions which you wrote
Often the most useful bit is somewhere in the middle (there may be
many low-level functions called)

36-350 Lecture 8

Example: Jackknife

Suppose I wrote my estimator like this:

gamma.est <- function(data) {
m <- mean(data)
v <- var(data)
s <- v/m
a <- m/s
return(list(a=a,s=s))

}

Now I write my jack-knifer:

gamma.jackknife <- function(data) {
n <- length(data)
jack.estimates <- c()
for (omitted.point in 1:n) {

jack.estimates <- rbind(jack.estimates,gamma.est(data[-omitted.point]))
}
var.of.ests <- apply(jack.estimates,2,var)
jack.var <- ((n-1)^2/n)*var.of.ests
return(sqrt(jack.var))

}

36-350 Lecture 8

What happens?

> gamma.jackknife(cats$Hwt[1:3])
Error: is.atomic(x) is not TRUE
> traceback()
5: stop(paste(ch, " is not ", if (length(r) > 1L) "all ", "TRUE",

sep = ";."), Call. = FALSE)
4: stopifnot(;is.atomic(x))
3: FUN(newX[, i], ...)
2: apply(jack.estimates, 2, var)
1: gamma.jackknife.2(cats$Hwt[1:3])

Tells us that the error arose from trying to apply var to each column
of jack.estimates

36-350 Lecture 8

Adding commands to the code for intermediate messages

print forces values to the screen
stick it before the problematic part to see if values look funny

print(paste("x is now",x))
y <- a.tricky.function(x)
print(paste("y has become",y"))

then add more prints upstream or downstream as needed

36-350 Lecture 8

Add print(str(jack.estimates)) before the apply and run
again:

> gamma.jackknife(cats$Hwt[1:3])
List of 6
$: num 32.4
$: num 21.8
$: num 648
$: num 0.261
$: num 0.379
$: num 0.0111
- attr(*, "dim")= int [1:2] 3 2
- attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:2] "a" "s"

NULL
Error: is.atomic(x) is not TRUE

The problem is that gamma.est gives a list, and so we get a weird list structure, instead of a

plain array

Re-write gamma.est to give a vector (as in the code provided), or wrap unlist around its

output

36-350 Lecture 8

warning: print warning messages along with the call that initiated
the weirdness

> quadratic.solver <- function(a,b,c) {
+ determinant <- b^2 - 4*a*c
+ if (determinant < 0) {
+ warning("Equation has complex roots")
+ determinant <- as.complex(determinant)
+ }
+ return(c((-b+sqrt(determinant))/2*a, (-b-sqrt(determinant))/2*a))
+ }
> quadratic.solver(1,0,-1)
[1] 1 -1
> quadratic.solver(1,0,1)
[1] 0+1i 0-1i
Warning message:
In quadratic.solver(1, 0, 1) : Equation has complex roots

36-350 Lecture 8

stopifnot: halt when results aren’t as we expect, and say why
We’ve seen this before
N.B., once you have found the bug, it’s generally good to turn lots
of these off!

36-350 Lecture 8

Test Cases and Dummy Functions

Localize error by using inputs where you know the answer
If you suspect foo is buggy, give foo a simple case where the proper
output is easy for you to calculate “by hand” (i.e., not using foo)
If foo works on a bunch of cases, well and good; if not, you need to
fix it (and possibly other things)
If inputs come from other functions, write functions, with the right
names, to generated fixed, simple values of the right format and
content
(save the real functions somewhere else)

To make sure the dummy is working, make its output as simple as
you can

36-350 Lecture 8

Example: Minimizing MSE

We want to estimate parameters by minimizing mean squared error
Hard to say whether we’ve actually found the minimum
Replace true MSE function with something we can minimize by
hand:

mse <- function(params,N=gmp$pop,Y=gmp$pcgmp) {
return((params[1]-6000)^2+(params[2]-0.13)^2)

}

N.B., takes all the arguments but ignores some of them

36-350 Lecture 8

Interactive Debugging

The browser, recover and debug functions modify how R executes
other functions
Let you view and modify the environment of the target function,
and step through it
You do not need to master them, though they can be very helpful
See chapter 13 of Matloff, and §§3.5–3.6 of Chambers

36-350 Lecture 8

Making a Change

After diagnosis, treatment: once the error is characterized and
localized, guess at what’s wrong with the code and how to fix it
Try the fix: does it work? Have you broken something else?
Try small cases first!

36-350 Lecture 8

Common Issues: Syntax

Parenthesis mis-matches
[[. . .]] vs. [. . .]
== vs. =
Identity of floating-point numbers
Vectors vs. single values: code works for one value but not multiple
ones, unexpected recycling
Element-wise comparison of structures (use identical, all.equal)
Silent type conversions

36-350 Lecture 8

Common Issues: Logic

Confusing variable names
Confusing function names
Giving unnamed arguments in the wrong order
R expression does not match the math you mean (left something
out, added something)

36-350 Lecture 8

Common Issues: Scope and Global Variables

Relying on a global variable which doesn’t have the right value
(or only has the right value in one situation)

Assuming that changing a variable inside the function will change it
elsewhere
Confusing variables within a function and those from where

36-350 Lecture 8

Programming for Debugging

You are going to have to debug
Debugging is frustrating and time-consuming
Writing now to make it easier to debug later is worth it, even if it
takes a bit more time
A lot of the design ideas we’ve talked about already contribute to
this

36-350 Lecture 8

Writing for Debugging

Comment your code
Insist on the three comment lines for each function: purpose,
inputs, outputs
Comment the innards as well, especially anything which strikes
you as tricky or clever
If you borrowed an idea from somewhere, use the comment to
remind yourself of where (and acknowledge the borrowing)

Use meaningful names
No restrictions on name lengths, few on name content
Avoid abbreviations, unless very well-established conventions
(and put in comments explaining the convention)

36-350 Lecture 8

Designing for Debugging

Use top-down design and write modular, functional programs
Respect the interfaces
Don’t write the same code multiple times
Use tests

36-350 Lecture 8

Top-Down Programming

Easier to identify errors, because the job of each function is small
and well-characterized
Easier to localize errors

if a bottom-level function is working, the error must be
somewhere up the chain
if a function can integrate artificial inputs, the problem has to
be either in the inputs its called with, or in a sub-function

so get the lowest-level functions right, and then work back up the
chain

36-350 Lecture 8

Interfaces

Respecting the interface means giving everything needed as part of
the input (or context of definition) and only relying on the explicit
return value

Makes it easier to reproduce bugs
Makes it easier to characterize bugs by finding the bad inputs
Global variables considered especially harmful
Special considerations for stochastic simulations, which we’ll
come to later

36-350 Lecture 8

Unified Code

Often have to do basically similar tasks at multiple points in the
program
Either write parallel code for each instance, or a single function
called multiple times
Writing one function is better for debugging

If it’s wrong, the error gets propagated everywhere
but there is only one place that needs fixing
and there is no chance to introduce new errors by mistakes in
copying or adjustment

36-350 Lecture 8

Tests

Helps answer “How do I know I’ve fixed this bug?”
Helps answer “How do I know I haven’t broken something that was
working?”
Much of what you did to characterize and localize the bug can be
turned into tests

36-350 Lecture 8

Error Handling

Ordinarily, errors just lead to crashing or the like
R has an error handling system which allows your function to
catch, and recover from, errors in functions they call (functions:
try, tryCatch)
Can also recover from not-really-errors (like optimizations that
don’t converge)
This system is very flexible, but rather complicated; beyond our
scope
See §3.7 of Chambers

36-350 Lecture 8

Summary

Debugging is largely about differential diagnosis
When you find a bug, characterize it by making sure you can
reproduce it, and figure out what inputs do and don’t give the
error
Once you know what the bug does, localize it by traceback and
adding messaging from the code; by dummy input generators;
and by interactive tracing
Examine the localized error for syntax error and for logical
errors; fix them, and see if that gets rid of the bug without
introducing new ones
Program for debugging: write with comments and meaningful
names; write modular functions; avoid repeated code

Next time: scope

36-350 Lecture 8

