
Statistical Computing (36-350)
Lecture 10: Functions as Objects

Cosma Shalizi

1 October 2012

36-350 Lecture 10

Agenda

Functions are objects, and can be arguments to other functions
Example: curve
Example: gradient and gradient.descent

Functions as return values
Example: Linear predictor
Example: the gradient operator
Example: surface

READING: Sections 7.5, 7.11 and 7.13 of Matloff
OPTIONAL RECOMMENDED READING: Chapter 3 of Chambers
CODE FROM THIS LECTURE: At class website, with comments
NO LECTURE this Wednesday

36-350 Lecture 10

http://www.stat.cmu.edu/~cshalizi/statcomp/lectures/10/lecture-10.R

Functions as Objects

In R, functions are objects, just like everything else
This means that they can be passed to functions as arguments
and returned by functions as outputs as well
Both ideas can be understood from your experience with calculus

36-350 Lecture 10

Functions of Functions: Mathematically

You already know these very well!
Maximum, and location of the maximum: takes f , gives number

max
x

f (x) , argmax
x

f (x)

Derivative of f at x0: takes a function and a point, gives a number

df

dx
(x0)≡ lim

h→0

f (x0+ h)− f (x0)

h

Definite integral of f over [a,b]: takes a function and two points,
gives a number

∫ b

a
f (x)dx≡ lim

n→∞

n−1
∑

i=0

�

b− a

n

�

f
�

a+ i
b− a

n

�

36-350 Lecture 10

Mathematical view cont’d.

Functions of functions which return numbers sometimes are
sometimes called functionals, e.g., expectation values:

E[f (X)]≡
∫

all x
f (x)p(x)dx

∇f (x0) takes f and x0, gives vector: not strictly a functional
∇f is another, vector-valued function
∇ takes a function and returns a function
∇ is an operator, not a functional

36-350 Lecture 10

Mathematically

Something which takes a function in and gives a function back is an
operator
Differentiation: the operator d/dx takes f and gives a new function
Gradient: the operator∇ takes f and gives a new function
similarly∇·,∇×, . . .

Indefinite integration:
∫ x
−∞ f (u)du takes f and gives a new function

36-350 Lecture 10

Functions of Functions: Computationally

We often want to do very similar things to many different functions
The procedure is the same, only the function we’re working with
changes
∴Write one function to do the job, and pass the function as an
argument
Because R treats functions as objects like any other, we can do this
simply
We have already seen an example: apply takes a function as one if its
arguments

36-350 Lecture 10

Some R Syntax Facts About Functions

A call to function returns a function object: body executed,
arguments required, parent environment
Typing a function’s name at the prompt gives the code
formals(foo) gives the list of arguments of foo: names are
argument names, values are expressions for defaults (if any)
body(foo) gives the body of the definition
environment(foo) gives the environment in which it was defined
Functions can be put into lists or arrays
User-defined and built-in R functions are both of class function

User-defined functions are of class closure, built-ins are either builtin or special (don’t

ask)

36-350 Lecture 10

Example: curve

You learned to use curve in the first week (because you did all of the
assigned reading, including section 2.3.3 of the textbook)
A call to curve looks like this:

curve(expr, from = a, to = b, ...)

expr is some expression involving a variable called x
which is swept from the value a to the value b
... are other plot-control arguments
curve presumes that the expression can take a vector of x values and
return a vector of numerical values, e.g.,

curve(x^2 * sin(x))

is fine

36-350 Lecture 10

Using curve with your own functions

If we have defined a function already, we can use it in curve:

psi <- function(x,c=1) {ifelse(abs(x)>c,2*c*abs(x)-c^2,x^2)}
curve(psi(x,c=10),from=-20,to=20)

Try this! Also try

curve(psi(x=10,c=x),from=-20,to=20)

and explain it to yourself

36-350 Lecture 10

If our function doesn’t take vectors to vectors, curve becomes
unhappy

> mse <- function(y0,a,Y=gmp$pcgmp,N=gmp$pop) {
+ mean((Y - y0*(N^a))^2)
+ }
> curve(mse(a=x,y0=6611),from=0.10,to=0.15)
Error in curve(mse(a = x, y0 = 6611), from = 0.1, to = 0.15) :

’expr’ did not evaluate to an object of length ’n’
In addition: Warning message:
In N^a : longer object length is not a multiple of shorter object length

How do we solve this?

36-350 Lecture 10

sapply

apply applies the same function to every row or column of an array
sapply applies the same function to every element of an array or
vector, and tries to simplify the result down to an array

> sapply(seq(from=0.10,to=0.15,by=0.01),mse,y0=6611)
[1] 154701953 102322975 68755655 64529167 104079528 207057513
> mse(6611,0.10)
[1] 154701953

Now (try it!):

mse.plottable <- function(a,...){ return(sapply(a,mse,...)) }
curve(mse.plottable(a=x),from=0.10,to=0.15)
curve(mse.plottable(a=x,y0=5100),from=0.10,to=0.20)

Next week, we will see many more related tricks for splitting up
problems and applying the same function repeatedly

36-350 Lecture 10

Example: gradient

Lots of statistical problems come down to optimization
Lots of optimization problems require finding the gradient of some
objective function
We do the same thing to get the gradient of f at x no matter what f
is:

find the partial derivative of f with respect to each component of x
return the vector of partial derivatives

It makes no sense to re-write this every time we change f!
∴ write code to calculate the gradient of an arbitrary function

gradient <- function(f,x,deriv.steps) {
not real code
evaluate the function at x and at x+deriv.steps
take slopes to get partial derivatives
return the vector of partial derivatives

}

36-350 Lecture 10

A naive implementation would use a for loop

gradient <- function(f,x,deriv.steps,...) {
p <- length(x)
stopifnot(length(deriv.steps)==p)
f.old <- f(x,...)
gradient <- vector(length=p)
for (coordinate in 1:p) {
x.new <- x
x.new[coordinate] <- x.new[coordinate]+deriv.steps[coordinate]
f.new <- f(x.new,...)
gradient[coordinate] <- (f.new - f.old)/deriv.steps[coordinate]

}
return(gradient)

}

Works, but it’s so repetitive!

36-350 Lecture 10

Better: use matrix manipulation and apply

gradient <- function(f,x,deriv.steps,...) {
p <- length(x)
stopifnot(length(deriv.steps)==p)
x.new <- matrix(rep(x,times=p),nrow=p) + diag(deriv.steps,nrow=p)
f.new <- apply(x.new,2,f,...)
gradient <- (f.new - f(x,...))/deriv.steps
return(gradient)

}

(clearer, and half as long)
Presumes that f takes a vector and returns a single number
Any extra arguments to gradient will get passed to f
Check: Does this work when f is a function of a single number?

36-350 Lecture 10

How can gradient be improved?

Acts badly if f is only defined on a limited domain and we ask
for the gradient somewhere near a boundary
Forces the user to choose deriv.steps
Uses the same deriv.steps everywhere, imagine f (x) = x2 sinx

. . . and so on through much of a first course in numerical analysis (or
at least §5.7 of Numerical Recipes)
If it really matters, use the grad function in the numDeriv package

36-350 Lecture 10

Now we can use this as a piece of a larger machine:

gradient.descent <- function(f,x,max.iterations,step.scale,
stopping.deriv,...) {
for (iteration in 1:max.iterations) {

grad <- gradient(f,x,...)
if(all(abs(grad) < stopping.deriv)) { break() }
x <- x - step.scale*grad

}
fit <- list(argmin=x,final.gradient=grad,final.value=f(x,...),

iterations=iteration)
return(fit)

}

(As written, we need to specify deriv.steps when calling this, but that’s not an argument.

(How can you tell? Why make this choice?))

Works equally well whether f is mean squared error of a regression,
ψ error of a regression, (negative log) likelihood, cost of a
production plan, . . .

36-350 Lecture 10

Wrappers and Anonymous Functions

gradient.descent presumes f takes a vector
mse takes two scalars
What to do?

1 Put a wrapper around mse:
mse.for.optimization <- function(param,...) {

return(mse(y0=param[1],a=param[2],...))
}
gradient.descent(f=mse.for.optimization, blah blah blah)

2 Use an anonymous function:
gradient.descent(f=function(param,...) {mse(y0=param[1],

a=param[2],...)},blah blah blah)

(in fact the f= is optional here)

Anonymous functions work because the return value of function is
a function object
Anonymous functions don’t clutter your workspace, but they don’t
stick around for you to examine later

36-350 Lecture 10

Cautions

Scoping f takes values for all names which aren’t its arguments
from the environment where it was defined, not the
one where it is called (e.g., not from inside gradient
or gradient.descent)

Debugging If f and g are both complicated, avoid debugging g(f)
as a block; divide the work by writing very simple f.0
to debug/test g, and debug/test the real f separately

36-350 Lecture 10

Returning Functions: A trivial example

Functions can be return values like anything else
make.noneuclidean <- function(ratio.to.diameter=pi) {

circumference <- function(d) { return(ratio.to.diameter*d) }
return(circumference)

}

Define make.noneuclidean but don’t run it yet
> circumference(10)
Error: could not find function "circumference"
> kings.i <- make.noneuclidean(3)
> kings.i(10)
[1] 30
> formals(kings.i)
$d
> body(kings.i)
{

return(ratio.to.diameter * d)
}
> environment(kings.i)
<environment: 0xe43d64>
> circumference(10)
Error: could not find function "circumference"

36-350 Lecture 10

A Less Trivial Example

Create a linear predictor, based on sample values of two variables

make.linear.predictor <- function(x,y) {
linear.fit <- lm(y~x)
predictor <- function(x) {
return(predict(object=linear.fit,newdata=data.frame(x=x)))

}
return(predictor)

}

The predictor function persists and works, even when the data we
used to create it is gone

36-350 Lecture 10

> library(MASS); data(cats)
> vet_predictor <- make.linear.predictor(x=cats$Bwt,y=cats$Hwt)
> rm(cats) # Data set goes away
> vet_predictor(4.0) # My cat’s body mass in kilograms

1
15.77959 # Predicted mass of my cat’s heart in grams

36-350 Lecture 10

A more mathematical example

Instead of finding∇f (x), find the function∇f :

nabla <- function(f,...) {
g <- function(x,...) { gradient(f=f,x=x,...) }
return(g)

}

> mse.gradient <- nabla(mse.for.optimization)
> mse.gradient(c(6611,0.15),deriv.steps=c(1,1e-6))
[1] 1.646082e+05 1.428795e+10
> gradient(mse.for.optimization,c(6611,0.15),c(1,1e-6))
[1] 1.646082e+05 1.428795e+10
> gradient(mse.for.optimization,c(6611,0.15),c(1,1e-6),Y=2*gmp$pcgmp)
[1] -2.908638e+05 -2.486987e+10
> mse.gradient(c(6611,0.15),deriv.steps=c(1,1e-6),Y=2*gmp$pcgmp)
[1] -2.908638e+05 -2.486987e+10

36-350 Lecture 10

The simple first-differences method is not so hot, so use the grad
function from numDeriv

del <- function(f,...) {
require(numDeriv)
g <- function(x,...) { grad(func=f,x=x, ...)}
return(g)

}

How would you check this?

36-350 Lecture 10

Example: surface

curve takes an expression and, as a side-effect, plots a 1-D curve by
sweeping over x
Suppose we want something like that but sweeping over two
variables
Built-in plotting function contour:

contour(x,y,z, [[other stuff]])

x and y are vectors of coordinates, z is a matrix of the corresponding
shape
(see help(contour) for graphical options)
Strategy: surface should make x and y sequences, evaluate the
expression at each combination to get z, and then call contour

36-350 Lecture 10

First attempt at surface

Only works with vector-to-number functions:

surface.0 <- function(f,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
plot.grid <- expand.grid(x=x.seq,y=y.seq)
z.values <- apply(plot.grid,1,f)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix))

}

36-350 Lecture 10

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

surface.0(function(p){return(sum(p^3))},from.x=-1,from.y=-1)

36-350 Lecture 10

curve doesn’t require us to write a function every time — what’s it’s
trick?
Expressions are just another class of R object, so they can be created
and manipulated
One manipulation is evaluation

eval(expr,envir)

evaluates the expression expr in the environment envir, which can
be a data frame or even just a list
When we type something like xˆ 2+yˆ 2 as an argument to curve,
R tries to evaluate it prematurely
substitute returns the unevaluted expression
curve uses first substitute(expr) and then eval(expr,envir),
having made the right envir

36-350 Lecture 10

Second attempt at surface

surface.1 <- function(expr,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
plot.grid <- expand.grid(x=x.seq,y=y.seq)
unevaluated.expression <- substitute(expr)
z.values <- eval(unevaluated.expression,envir=plot.grid)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix))

}

36-350 Lecture 10

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

surface.1(abs(x^3)+abs(y^3),from.x=-1,from.y=-1)

36-350 Lecture 10

Evaluating a function at every combination of two arguments is a
really common task
There is a function to do it for us: outer (seen in lecture 3)

surface.2 <- function(expr,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
unevaluated.expression <- substitute(expr)
z <- function(x,y) {

return(eval(unevaluated.expression,envir=list(x=x,y=y)))
}
z.values <- outer(X=x.seq,Y=y.seq,FUN=z)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix))

}

could also include the function as part of the returned list

36-350 Lecture 10

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

surface.2(x^4-y^4,from.x=-1,from.y=-1)

36-350 Lecture 10

Summary

In R, functions are objects, and can be arguments to other
functions

Use this to do the same thing to many different functions
Separates writing the high-level operations and the first-order
functions
Use sapply (etc.), wrappers, anonymous functions as adapters

Functions can also be returned by other functions
Variables other than the arguments to the function are fixed by
the environment of creation
Manipulating expressions lets us flexibly create functions

Next week: the split/apply/combine trick for doing big jobs in
small pieces

36-350 Lecture 10

