
Statistical Computing (36-350)
Lecture 15: Refactoring

Cosma Shalizi

15 October 2012

36-350 Lecture 13

Agenda

Abstraction adjusts programming to human strengths
Refactoring adjusts code to bring out commonalities
Ways of refactoring: names, objects, common operations,
general operations
Example: The jack-knife

36-350 Lecture 13

Abstraction

The point of abstraction is to program in ways which don’t use
people as bad computers
Economics says: rely on comparative advantage

Computers Good at tracking arbitrary details, applying rigid rules
People Good at thinking, meaning, discovering patterns

∴ organize programming so that people spend their time on the big
picture, and computers on the little things
Abstraction — hiding details and specifics, dealing in generalities and
common patterns — is a way to do this
We have talked about lots of examples of this already
Data structures; Functions; Interfaces; Functions as objects

36-350 Lecture 13

Refactoring

One mode of abstraction is refactoring
The metaphor: numbers can be factored in many different ways;
pick ones which emphasize the common factors

144 = 9× 16= 3× 3× 4× 4

360 = 6× 60= 3× 3× 4× 5× 2

Once we have some code, and it (more or less) works, re-write it to
emphasize commonalities:

Parallel and transparent naming
Grouping related values into objects
Common or parallel sub-tasks become shared functions
Common or parallel over-all tasks become general functions

36-350 Lecture 13

Naming

R puts next to no limits on names of variables and functions
∴ we should use names that make sense to humans

Names should indicate purpose or meaning. Call something
plot or predict when, but only when, it plots or predicts.
Similar objects should have similar names.

36-350 Lecture 13

Example: conventions for functions related to random variables
dnorm probability density of normal r.v.
rnorm random value from normal r.v.
pnorm cumulative probability of normal r.v.
qnorm quantile of normal r.v.
dgamma probability density of gamma r.v.
ppois ?
rt ?

qchisq ?

36-350 Lecture 13

Why Care About Names?

Your code is easier to understand
Because it is easier to understand
it is more likely to be used (right)
it is easier to make repairs and improvements
people (including you) do not waste time trying to puzzle it out
you are more easily replaced as a programmer

36-350 Lecture 13

Grouping into Objects

Notice that the same variables keep being used together
Create a single data object (data frame, list, . . .) that includes them
all as parts
Replace mentions of the individual variables with mentions of parts
of the unified object

36-350 Lecture 13

Advantages of Grouping

Clarity (especially if you give the object a good name)
Makes sure that the right values are always present (pass the object as
an argument to functions, rather than the components)
Memorization: if you know you are going to want to do the same
calculation many times on these data values, do it once when you
create the object, and store the result as a component

36-350 Lecture 13

Extracting the Common Sub-Task

Notice that your code does the same thing, or nearly the same thing,
in multiple places, as part doing something else
Extract the common operation
Write one function to do that operation, perhaps with additional
arguments
Call the new function in the old locations

36-350 Lecture 13

Advantages of Extracting Common Operations

Main code focuses on what is to be done, not how (abstraction,
human understanding)
Only have to check one piece of code for the sub-task
Improvements to the sub-task propagate everywhere
Drawback: bugs propagate everywhere too

36-350 Lecture 13

Extracting General Operations

Notice that you have several functions doing parallel, or nearly
parallel, operations
Extract the common pattern or general operation
Write one function to do the general operation, with additional
arguments (typically including functions)
Call the new general function with appropriate arguments, rather
than the old functions

36-350 Lecture 13

Advantages of Extracting General Patterns

Clarifies the logic of what you are doing (abstraction, human
understanding, use of statistical theory)
Extending the same operation to new tasks is easy, not re-writing
code from scratch
Old functions provide test cases to check if general function works

36-350 Lecture 13

Re-factoring tends to make code look more like the result of
top-down design
This is no accident

36-350 Lecture 13

Extended example: the jackknife

Let’s look at an example of using refactoring
Remember the jackknife from assignments: we have an estimator θ̂
of a parameter θ, and want to know the standard error of our
estimate, se

θ̂
.

The jackknife approximation is: omit case i, get estimate θ̂(−i). Take

the variance of all the θ̂(−i), and multiply by (n−1)2

n to get ≈ variance

of θ̂; then se
θ̂
= square root of that variance.

(Why (n−1)2

n ? Think about just getting the standard error of the mean)

36-350 Lecture 13

Jackknife for gamma parameters

gamma.jackknife <- function(data) {
n <- length(data)
jackknife.ests <- matrix(NA,nrow=2,ncol=n)
rownames(jackknife.ests) = c("a","s")
for (omitted.point in 1:n) {

fit <- gamma.est(data[-omitted.point])
jackknife.ests["a",omitted.point] <- fit$a
jackknife.ests["s",omitted.point] <- fit$s

}
variance.of.ests <- apply(jackknife.ests,1,var)
jackknife.vars <- ((n-1)^2/n)*variance.of.ests
jackknife.stderrs <- sqrt(jackknife.vars)
return(jackknife.stderrs)

}

36-350 Lecture 13

Jackknife for the mean

mean.jackknife <- function(data) {
n <- length(data)
jackknife.ests <- vector(length=n)
for (omitted.point in 1:n) {

new.mean <- mean(data[-omitted.point])
}
variance.of.ests <- var(new.mean)
jackknife.var <- ((n-1)^2/n)*variance.of.ests
jackknife.stderr <- sqrt(jackknife.vars)
return(jackknife.stderr)

}

36-350 Lecture 13

Jackknife for linear regression coefficients

jackknife.lm <- function(data,p) {
n <- nrow(data)
jackknife.ests <- matrix(0,nrow=p,ncol=n)
for (omit in 1:n) {

new.coefs <- lm(YOUR.FORMULA.HERE,data=data[-omit,])$coefficients
jackknife.ests[,omit] <- new.coefs

}
variance.of.ests <- apply(jackknife.ests,1,var)
jackknife.var <- ((n-1)^2/n)*variance.of.ests
jackknife.stderr <- sqrt(jackknife.vars)
return(jackknife.stderr)

}

36-350 Lecture 13

Refactoring the Jackknife

Omitting one point or row is a common sub-task
The general pattern:

figure out the size of the data
for each case

omit that case
repeat some estimation and get a vector of numbers

take variances across cases
scale up variances
take the square roots

Refactor by extracting the common “omit one” operation
Refactor by defining a general “jackknife” operation

36-350 Lecture 13

The Common Operation

Works for vectors, lists, 1D and 2D arrays, matrices, data frames:

omit.case <- function(data,i) {
d <- dim(data)
if (is.null(d) || (length(d)==1)) {

return(data[-i])
} else {

return(data[-i,])
}

}

EXERCISE: Modify so it also handles higher-dimensional arrays

36-350 Lecture 13

The General Operation

jackknife <- function(estimator,data) {
if (is.null(dim(data))) { n <- length(data) }
else { n <- nrow(data) }
jackknife.ests <- c()
for (omit in 1:n) {

reestimate <- estimator(omit.case(data,omit))
jackknife.ests <- cbind(jackknife.ests,reestimate)

}
var.of.reestimates <- apply(jackknife.ests,1,var)
jackknife.var <- ((n-1)^2/n)* var.of.reestimates
jackknife.stderr <- sqrt(jackknife.var)
return(jackknife.stderr)

}

Could allow other arguments to estimator, spin off finding n as its own function, etc.

36-350 Lecture 13

It works

> jackknife(estimator=mean,data=rnorm(n=400,mean=7,sd=5))
[1] 0.2361081
> est.coefs <- function(data) {

return(lm(Hwt~Bwt,data=data)$coefficients)
}
> est.coefs(cats)
(Intercept) Bwt
-0.3566624 4.0340627

> jackknife(estimator=est.coefs,data=cats)
(Intercept) Bwt

0.8314142 0.3166847

36-350 Lecture 13

Summary

Refactoring adjusts code to emphasize patterns
Names are informative and systematic
Objects keep related values together
Common sub-tasks become specialized lower-level functions
General patterns of operations become high-level general
functions

Refactoring makes code look more like top-down design
Refactoring usually involves abstraction
Abstraction emphasizes human strengths

36-350 Lecture 13

