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1 Mixing and Correlation Time
Let’s suppose for simplicity that our Markov chain has only one eigenvector v with
eigenvalue 1, so all the other eigenvalues are strictly< 1 in magnitude. As we saw last
time, if we put the eigenvalues and their eigenvectors in decreasing order,

1= λ1 > |λ2| ≥ |λ3| ≥ . . .≥ |λK | (1)

then when we evolve some initial distribution p0 for many time steps, the second
largest eigenvalue dominates:

p0q
t =

K
∑

i=1

ai viλ
t
i (2)

≈ v + a2v2λ
t
2 (3)

or
p0q

t − v ≈ a2v2λ
t
2 (4)

So the magnitude of the distance from equilibrium is

‖p0q
t − v‖ ≈ |a2||λ2|

t (5)

(since all the eigenvectors have norm 1).
How many steps τ does it take for the Markov chain to come close, say within a

distance h, of the equilibrium distribution? Let’s appeal to Eq. 5:

h = ‖p0q
τ − v‖ (6)

≈ |a2||λ2|
τ (7)

log h ≈ log |a2|+τ log |λ2| (8)

τ ≈ log h−log |a2|
log |λ2|

(9)

Notice that since h and |λ2| are both < 1, their logarithms are negative numbers, and
this τ ends up positive, as it should.

τ is called the mixing time, because it indicates how long we have to wait for
the chain to mix together different initial conditions, and forget which state it started
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in. This matters because, while the approach to equilibrium is exponentially fast,
the base of the exponent is |λ2|, and if that is too close to 1, we will see very little
movement1.

1.1 Correlations
The mixing time can be somewhat pessimistic if we are interested only in a certain
function of the state, and not the whole distribution of states. Let’s fix our func-
tion f and look at the random sequence Y1 = f (X1),Y2 = f (X2), . . .. In general,
this sequence will not be a Markov chain, but we can still say something about its
convergence.

Make three assumptions:

1. The expectation value is constant:

E[Y1] =E
�

Yt
�

=µ (10)

2. Covariances are “stationary”:

Cov
�

Yt ,Ys
�

= ρ(|t − s |) (11)

3. Covariances are “summable”:
∞
∑

h=0

|ρ(h)|= κρ(0)<∞ (12)

We are interested in the time average

1

n

n
∑

t=1

Yt (13)

The expectation of this is constant:

E





1

n

n
∑

t=1

Yt



 =
1

n

n
∑

t=1

E
�

Yt
�

(14)

= µ (15)

The variance is a little trickier:

Var





1

n

n
∑

t=1

Yt



 =
1

n2
Var





n
∑

t=1

Yt



 (16)

=
1

n2





n
∑

t=1

Var
�

Yt
�

+ 2
n−1
∑

t=1

n
∑

s=t+1

Cov
�

Yt ,Ys
�



 (17)

=
ρ(0)

n
+

2

n2

n−1
∑

t=1

n
∑

s=t+1

ρ(s − t ) (18)

=
ρ(0)

n
+

2

n2

n−1
∑

t=1

n−t
∑

h=1

ρ(h) (19)

1Remember that for small x, (1− x)n ≈ 1− nx, so if λ2 = 1− 10−12, say, then λ1000
2 ≈ 1− 10−9.
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Now we use some inequalities:

n−t
∑

h=1

ρ(h) ≤
n−t
∑

h=1

|ρ(h)| (20)

≤
∞
∑

h=1

|ρ(h)| (21)

= κρ(0) (22)

Therefore

Var





1

n

n
∑

t=1

Yt



 ≤
ρ(0)

n
+

2n

n2
κρ(0) (23)

=
ρ(0)

n
[1+ 2κ] (24)

=
ρ(0)

n/τc
(25)

where τc = 1+ 2κ is the correlation time. With uncorrelated samples, τc = 1 and
we get the usual behavior we’re used to. With correlated samples, we get much the
same sort of behavior, but the effective number of samples is not n but n/τc .

Since ρ(0)
n/τc
→ 0 as n → ∞, the variance of the time-average shrinks, and so it

converges on the true expectation µ.

Problem

Suppose that E
�

Yt
�

is not constant, but that E
�

Yt
�

→ µ as t →∞. What has to
change in the argument above? What if it is only

1

n

n
∑

t=1

E
�

Yt
�

→µ ? (26)

Problem

Suppose that Yt+1 = φYt + εt , where |φ| < 1 and the εt are independent variables
with expectation 0 and variance σ2. Find the ρ(h) function, and calculate κ.

2 Convergence of Continuous Markov Processes
We have analyzed finite-state Markov chains because the math needed to understand
them is fairly elementary. The math needed to give a parallel analysis of Markov pro-
cesses with infinitely many states, or with continuous states, is significantly harder.
One of the main issues is that a finite Markov chain must eventually hit a recurrent
component and stay there, but that doesn’t have to happen in infinite state spaces.
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(There may be no recurrent states, for one thing.) Still, let’s say a little bit about
continuous-state Markov processes.2

First of all, instead of having a transition matrix q, we have a transition density
q(y|x), which gives the conditional probability density of Xt+1 at y, given that Xt =
x. To evolve a density, we use an integral rather than matrix multiplication:

pt+1(x) =
∫

pt (x
′)q(x|x ′)d x ′ (27)

A function f is an eigenfunction, with eigenvalue λ, when
∫

f (x ′)q(x|x ′)d x ′ = λ f (x) (28)

The eigenvalues of a transition density q are all still inside the unit circle. Invariant
probability densities p∗ are the eigenfunctions with eigenvalue 1,

p∗(x) =
∫

p∗(x ′)q(x|x ′)d x (29)

but they may not exist.
Roughly speaking, for there to be an invariant distribution, we need to find a part

of the state space with three properties:

1. The region is itself invariant: once the process enters, it never leaves.

2. No strictly smaller region is also invariant.

3. After some fixed and finite number of steps, there is a positive probability of
going from any part of the region to any other3.

When these conditions hold, then the ergodic theorem holds, because any trajec-
tory of the Markov process ends up wandering over the whole invariant region, and
spending the same amount of time in each part of it as any other trajectory.

As for the rate of convergence of time averages, the arguments in Section 1.1,
about the convergence of any one function in terms of its correlation time, go through
just as before. Replicating the analysis of mixing times is a bit trickier. Remember
that with a finite number K of states, there are K eigenvectors. As K→∞, the num-
ber of eigenvectors, and of eigenvalues, therefore goes towards infinity. Continuous
Markov processes therefore usually have infinitely many eigenvalues and eigenfunc-
tions. It can still happen that there is a gap between 1 and the next largest eigenvalue;
in that case, everything happens more or less as before, and we have exponentially-
fast convergence to the equilibrium distribution. Unfortunately, it can happen that
there are infinitely many eigenvalues arbitrarily close to 1, and then convergence to
the equilibrium is less than exponential.

2For an accessible over-view of continuous Markov processes, see [1]. For the gory details, see [6].
3In symbols, there is an k such that, for any sets A,B in the region, P

�

Xt+k ∈ B |Xt ∈A
�

> 0. Notice
that we need to have one k which works for all pairs of sub-regions.
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3 Markov Chain Monte Carlo
The ergodic theorem tells us that when X1,X2, . . .Xt , . . . come from a reasonable
Markov process,

lim
n→∞

1

n

n
∑

t=1

f (Xi ) =Ev [ f (X )] (30)

with v being the invariant distribution of the Markov process. We can read this
equation in either direction: if it is easy for us to calculate expectations under v, we
“read it from the right”, and it gives us a short-cut for long simulations. If on the
other hand it is easier for us to simulate, we “read it from the left”, and it gives us a
way to do complicated integrals.

One very important case of “reading from the right” is the way search-engines
calculate the “page-rank” of web documents, the amount of time a random walk on
the Web would spend on a given page. This is a bit long to go into here, but see
http://www.stat.cmu.edu/~cshalizi/350/lectures/03/03.pdf.

For “reading from the left” to be useful, we would need to come up with a Markov
process whose invariant distribution was our target distribution v, without being
able to just draw independent samples from v. This might sound odd, but it is actu-
ally very common. This is because a lot of distributions have the form

p(x)∝ f (x) (31)

for some nice function f . This is fine, but the integral of f is usually not 1. So we
need

p(x) =
f (x)

∫

y f (y)d y
(32)

We would need to find the integral in the denominator to actually sample from p,
but it’s generally not very easy to compute. For instance, you remember that

∫ ∞

−∞
e−x2/2d x =

p
2π (33)

but (if you are anything like most students!) do not remember why. You will find it
instructive to try to find

∫ ∞

0
x−αe−λx (34)

as a function of α and λ— and these are comparatively easy cases.
To give a somewhat concrete illustration, think of error-correction in communi-

cations. Your friend wants to send you a message, x. What you receive is a distorted
and noisy version of it, z. You can try to recover the original by asking how probable
different messages were. By Bayes’s rule,

p(x|z) =
p(z |x)p(x)

p(z)
=

p(z |x)p(x)
∫

y p(z |y)p(y)d y
(35)
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The numerator here is fairly tractable: p(x) represents how common different signals
are, and p(z |x) represents the noise and distortion. But the denominator is an ugly
thing, where you would have to integrate over all possible signals — and then do that
again as soon as z changed.

It would be nice if there was some way we could sample from distributions like
this without needing to know the normalizing factors (the integrals in the denomina-
tor). This is where “Markov chain Monte Carlo”, a.k.a. “the Metropolis algorithm”
[5], comes in.

Suppose that p is our favorite probability density, which we want to sample from,
and p(x) = f (x)/c , where the constant c is one of the awkward things we want to
avoid calculating. If we could find a Markov process with transition density q , where

p(x)q(y|x) = p(y)q(x|y) (36)

then it is not hard to convince yourself that p would be invariant. This is because the
probability flowing out of state x to state y is exactly balanced by probability flowing
into x from y, so nothing changes. (A distribution p obeying Eq. 36 is say to “obey
detailed balance”.) Now let’s try to solve this for q :

q(y|x)
q(x|y)

=
p(y)

p(x)
=

f (y)

f (x)
(37)

and the awkward normalizing constant has disappeared.
This leads to the Metropolis algorithm:

1. Set X1 however we like, and initialize t ← 1.

2. Draw a proposal Zt from some conditional distribution r (·|Xt )— for instance
a Gaussian or uniform centered on Xt , or anything else easy to draw from and
with smooth enough noise.

3. Draw Ut independently from a uniform distribution on [0,1).

4. If Ut < f (Zt )/ f (Xt ), then Xt+1 = Zt , otherwise Xt+1 =Xt .

5. Increase t by 1 and go to step 2.

What we return as the sample is the sequence of Xt values.
You will notice that the Metropolis algorithm is very like the rejection method

for generating random variables, but not quite. In particular, if f (Zt ) > f (Xt ), then
Xt+1 = Zt automatically. The chain always accepts proposals which move it towards
regions of higher density. It sometimes accepts proposals which move it towards lower
density — it’s very likely to accept them if f (Zt ) is only a little below f (Xt ), and
never accepts them if f (Zt ) = 0.

You can check that

• The Xt variables are a Markov process, since the distribution of Xt+1 depends
only on the value of Xt .
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• The transition density obeys Eq. 37.

• Consequently, Eq. 36 holds, and the invariant distribution of the Markov pro-
cess is p, as desired.

Since p is invariant, if we drew X1 according to p, we would always be sampling
from the desired distribution. Of course we don’t know how to do that, so we draw
X1 from some other, more convenient distribution. This means that the first samples
are from the wrong distribution, and we shouldn’t use them. (We need to let the
Markov chain “burn in”.) How many values should we discard from the beginning
of the X sequence? That depends on how rapidly the chain mixes, which is why we
went over that earlier. There are a lot of diagnostic calculations which are supposed
to tell whether the chain has adequately mixed. The simplest of these (though com-
putationally expensive) is to run multiple copies of the chain independently, and see
what the time averages have converged.

Problem
It is common to model the time between events like industrial accidents, earthquakes,
or e-mails with exponential distributions4. That is, the probability that the time
between two events falls between x and x + d x is ≈ λe−λx d x. Unfortunately, the
rate λ could itself change. One way to model this is to have λ be random. Suppose
that λ follows a gamma distribution with scale a and shape 1. Then

p(x) =
∫ ∞

0
dλ
λa−1e−λ

Γ(a)
λe−λx (38)

It would be handy to infer the current value of the rate λ from the observed
times between events. Set up a Markov chain to sample from the distribution of rates
conditional on the most recent inter-event time x,

p(λ|x) =
p(x|λ)p(λ)

p(x)
(39)

but do not solve Eq. 38 for p(x). (Assume that a is known.) Then check your by
solving the equation and getting the exact formula for p(λ|x), and comparing that
density to the histogram from your code for several values of x. What would you
have to change in your code to use a different, non-gamma prior distribution of rates
λ?

Hint: The variable-rates model, the exact calculation with a gamma distribution
of rates, and comparison to accident data all come from [2]. For application of closely
related models to e-mail, without the gamma distribution, see [4, 3].

4Empirically, this is because it often works; theoretically, it is because a continuous-time Markov pro-
cess spends an exponentially-distributed amount of time in each state before moving.
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