
Statistical Computing (36-350)
Lecture 17: Optimization I: Unconstrained, Deterministic

Optimization

Cosma Shalizi

29 October 2012

36-350 Lecture 17

Agenda

Gradient descent and Newton’s method
Coordinate descent and Nelder-Mead
Optimizing statistical functionals
optim

36-350 Lecture 17

Optimization Problems

Given an objective function f :D 7→R, find

θ∗ = argmin
θ

f (θ)

Basics: maximizing f is minimizing −f :

argmin
θ
−f (θ) = argmax

θ
f (θ)

If h is strictly increasing (e.g., log), then

argmin
θ

f (θ) = argmin
θ

h(f (θ))

36-350 Lecture 17

Examples of Optimization Problems

Minimize mean-squared error of regression surface (Gauss, c. 1800)
Maximize log-likelihood of distribution (Fisher, c. 1918)
Maximize output of plywood from given supplies and factories
(Kantorovich, 1939)
Maximize output of tanks from given supplies and factories;
minimize number of bombing runs to destroy factory (c. 1941–1945)
Maximize return of portfolio for given volatility (Markowitz, 1950s)
Minimize cost of airline flight schedule (Kantorovich...)
Maximize reproductive fitness of an organism (Maynard Smith)

36-350 Lecture 17

Considerations

Approximation: How close can we get to θ∗, and/or f (θ∗)?
Time complexity: How many computer steps does that take?
Will depend on precision of approximation, niceness of f , size of D,
size of data, method. . .
Big-O notation: write h(x) =O(g(x)) if limx→∞

h(x)
g(x) = c

e.g., x2− 5000x+ 123456778=O(x2)

Useful to look at over-all scaling, hiding details
Most optimization algorithms use successive approximation, so
distinguish number of iterations from cost of each iteration

36-350 Lecture 17

As you remember from calculus. . .

Suppose domain D is Rp, or some part of it
If θ∗ is an interior minimum and f is differentiable,

∇f (θ∗) = 0

If f is twice-differentiable,

∇2f (θ∗)≥ 0

meaning for any vector v,

vT∇2f (θ∗)v≥ 0

∇2f = the Hessian, H
Reverse is not true in general: even if∇f (θ) = 0, H(θ)≥ 0, θ might
only be a local minimum

36-350 Lecture 17

Gradient Descent

1 Start with initial guess for θ, step-size η
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ)
2 Set θ← θ−η∇f (θ)

3 Return final θ as approximate θ∗

Variations: adaptively adjust η to make sure of improvement
or search along the gradient direction for minimum

36-350 Lecture 17

Pros and Cons of Gradient Descent

Pro:
Moves in direction of greatest immediate improvement
If η is small enough, gets to a local minimum eventually, and
then stops
For nice f , f (θ)≤ f (θ∗)+ ε in O(ε−2) iterations
For very nice f , only O(logε−1) iterations

To get∇f (θ), take p derivatives, so each iteration costs O(p)
Cons:

“Sufficiently small” η can be really, really small
Slow progress or zig-zagging if components of∇f are very
different sizes
Taking derivatives can slow down as data grows — really O(np)
per iteration

36-350 Lecture 17

Newton’s Method

Use a Taylor expansion:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

Take gradient with respect to θ∗ and set to zero:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true

36-350 Lecture 17

Newton’s Method: The Algorithm

1 Start with guess for θ
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ) and Hessian H(θ)
2 Set θ← θ−H(θ)−1∇f (θ)

3 Return final θ as approximation to θ∗

Like gradient descent, but with inverse Hessian giving the step-size
“This is about how far you can go with that gradient”

36-350 Lecture 17

Advantages and Disadvantages of Newton’s Method

Pro:
Step-sizes chosen adaptively through 2nd derivatives, much
harder to get zig-zagging, over-shooting, etc.
Also guaranteed to need O(ε−2) steps to get within ε of
optimum
Only O(log logε−1) for very nice functions
Typically many fewer iterations than gradient descent

Cons:
Hopeless if H doesn’t exist or isn’t invertible
Need to take O(p2) second derivatives plus p first derivatives
Need to solve Hθnew =Hθold−∇f (θold) for θnew
inverting H is O(p3), but cleverness gives O(p2) for solving

36-350 Lecture 17

Getting Around the Hessian

Want to use the Hessian to improve convergence
Don’t want to have to keep computing the Hessian at each step
Approaches

Use knowledge of the system to get some approximation to the
Hessian, use that instead of taking derivatives (“Fisher scoring”)
Use only diagonal entries (p unmixed 2nd derivatives)
Use H(θ) at initial guess, hope H changes very slowly with θ
Re-compute H(θ) every k steps, k> 1
Fast, approximate updates to the Hessian at each step (BFGS)

36-350 Lecture 17

Coordinate Descent

Gradient methods adjust all coordinates at once
Try this instead:

1 Start with initial guess θ
2 While ((not too tired) and (making adequate progress))

For i ∈ (1 : p)
1 do 1D optimization over ith coordinate of θ, holding the others

fixed
2 Update ith coordinate to this optimal value

3 Return final value of θ
Needs a good 1D optimizer, and can bog down for very tricky
functions, but can also be extremely fast and simple

36-350 Lecture 17

Nelder-Mead, a.k.a. the Simplex Method

Try to cage θ∗ with a simplex of p+ 1 points
Order the trial points, f (θ1)≤ f (θ2) . . .≤ f (θp+1)
θp+1 is the worst guess — try to improve it
θ0 =

1
n

∑n
i=1θi = center of the not-worst

Reflection: Try x0− (xp+1− x0), the opposite side of the center
from xp+1

if it’s better than xp but not than x1, replace the old xp+1 with it
Expansion: if the reflect point is better than the best, try
x0− 2(xp+1− x0); replace the old xp+1 with the better of the
reflected and the expanded point

Contraction: If the reflected point is worse that xp, try

x0+
xp+1−x0

2 ; if the contracted value is better, replace xp+1 with it

Reduction: If all else fails, xi←
x1+xi

2

36-350 Lecture 17

Making Sense of Nedler-Mead

The Moves:
Reflection: try the opposite of the worst point
Expansion: if that really helps, try it some more
Contraction: see if we overshot when trying the opposite
Reduction: if all else fails, try being more like the best point

Pros:
Each iteration ≤ 4 evaluations of f , plus sorting (at most
O(p logp), usually much better)
No derivatives used, can even work for dis-continuous f

Con:
Can need many more iterations than gradient methods

36-350 Lecture 17

Optimizing Statistical Functionals

Optimizing for statistics is funny: we know our objective function is
noisy
Have f̂n (sample objective) but want to minimize f (population
objective)
Why optimize f̂n to ±10−6 when f̂ only matches f to ±1?
If f̂n is an average over data points, then (law of large numbers)

E
�

f̂n(θ)
�

= f (θ)

and (central limit theorem)

f̂n(θ)− f (θ) =O(n−1/2)

Can use probability theory to analyze how closely the sample
optimum matches the population optimum

36-350 Lecture 17

Statistical Theory in Two Slides

θ̂n = argmin
θ

f̂n(θ)

∇f̂n(θ̂n) = 0

≈ ∇f̂n(θ
∗)+ bHn(θ

∗)(θ̂n−θ
∗)

θ̂n ≈ θ∗− bH−1
n (θ

∗)∇f̂n(θ
∗)

Opposite expansion to Newton’s method

When does bH−1
n (θ

∗)∇f̂n(θ
∗)→ 0?

bHn(θ
∗) → H(θ∗) (by LLN)

∇f̂n(θ
∗)−∇f (θ∗) = O(n−1/2) (by CLT) but∇f (θ∗) = 0

∴∇f̂n(θ
∗) = O(n−1/2)

Var
�

∇f̂n(θ
∗)
�

→ n−1K(θ∗) (CLT again)

36-350 Lecture 17

How much noise is there in θ̂n?

Var
h

θ̂n

i

= Var
h

θ̂n−θ
∗
i

= Var
�

bH−1
n (θ

∗)∇f̂n(θ
∗)
�

= bH−1
n (θ

∗)Var
�

∇f̂n(θ
∗)
�

bH−1
n (θ

∗)

→ n−1H−1(θ∗)K(θ∗)H−1(θ∗) =O(pn−1)

How much noise is there in f (θ̂n)?

f (θ̂n)− f (θ∗) ≈
1

2
(θ̂n−θ

∗)T H(θ∗)(θ̂n−θ
∗)

Var
h

f (θ̂n)− f (θ∗)
i

≈ tr
�

H(θ∗)Var
h

θ̂n−θ
∗
i

H(θ∗)Var
h

θ̂n−θ
∗
i�

→ n−2 tr
�

K(θ∗)H−1(θ∗)K(θ∗)H−1(θ∗)
�

= O(pn−2)

36-350 Lecture 17

What You Need to Remember

If everything works out ideally (maximum likelihood, correct
model) K=H, and

θ̂n ≈ θ∗− bH−1
n (θ

∗)∇f̂n(θ
∗)

Var
h

θ̂n

i

≈ n−1H−1(θ∗)≈ n−1H(θ̂n)

Var
h

f (θ̂n)− f (θ∗)
i

≈ n−2p

If K 6=H, do the algebra and deal with more noise

∴ Little point to optimizing f̂n much more precisely than ±
Æ

p/n2

36-350 Lecture 17

Optimization in R: optim

optim(par,fn, gr, method, control, hessian)

fn function to be minimized; mandatory
par initial parameter guess; mandatory
gr gradient function; only needed for some methods

method defaults to Nelder-Mead, could be BFGS (Newton-ish)
control optional list of control settings

(maximum iterations, scaling, tolerance for convergence, etc.)

hessian should the final Hessian be returned? default FALSE

Return contains the location ($par) and the value ($val) of the
optimum, diagnostics, possibly $hessian

36-350 Lecture 17

mse <- function(theta) { mean((gmp$pcgmp - theta[1]*gmp$pop^theta[2])^2) }
grad.mse <- function(theta) { grad(func=mse,x=theta) }
theta0=c(5000,0.15)
fit1 <- optim(theta0,mse,hessian=TRUE) # Nelder-Mead
fit2 <- optim(theta0,mse,grad.mse,method="BFGS",hessian=TRUE)

Let’s compare the two attempts at optima

36-350 Lecture 17

fit1: Derivative-free simplex method

Run-time: 0.013 seconds

> fit1
$par
[1] 6492.7390560 0.1276986

$value
[1] 61853983

$counts
function gradient

203 NA

$convergence
[1] 0

$message
NULL

$hessian
[,1] [,2]

[1,] 5.250983e+01 4422941
[2,] 4.422941e+06 375813287390

36-350 Lecture 17

fit2: Newton-ish BFGS method

Run-time: 0.027 seconds

> fit2
$par
[1] 6493.2563738 0.1276921

$value
[1] 61853983

$counts
function gradient

63 11

$convergence
[1] 0

$message
NULL

$hessian
[,1] [,2]

[1,] 5.25021e+01 4422070
[2,] 4.42207e+06 375729087977

36-350 Lecture 17

Summary

1 Trade-offs: complexity of iteration vs. number of iterations vs.
precision of approximation

Simplex: very robust, each iteration simple, doesn’t take
advantage of smoothness
Gradient descent: more complex iterations, more guarantees,
more adaptive
Newton: even more complex iterations, but few of them for
good functions

2 Noise limits how much optimization is worth doing
3 Start with pre-built code like optim, implement your own only

if needed

36-350 Lecture 17

