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Agenda

Stochastic optimization methods
Constraints and penalties

OPTIONAL READING (big picture): Francis Spufford, Red Plenty;
Herbert Simon, The Sciences of the Artificial
OPTIONAL READING (close up): Bottou and Bosquet, “The
Tradeoffs of Large Scale Learning”
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Stochastic Gradient Descent
Simulated Annealing

Problems with Big Data

Typical statistical objective function, mean-squared error:

f (θ) =
1

n

n
∑

i=1

(yi−m(xi,θ))
2

Getting a value of f is O(n),∇f is O(np), H is O(np2)
worse still if m slows down with n

Not bad when n= 100 or even n= 104, but if n= 109 or n= 1012 we
don’t even know which way to move
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Sampling, the Alternative to Sarcastic Gradient Descent

Pick one data point I at random (uniform on 1 : n)
Loss there, (yI −m(xI ,θ))

2, is random, but

E
�

(yI −m(xI ,θ))
2
�

= f (θ)

Generally, if f (θ) = n−1∑n
i=1 fi(θ) and fi are well-behaved,

E[fI (θ)] = f (θ)
E[∇fI (θ)] = ∇f (θ)

E
�

∇2fI (θ)
�

= H(θ)

∴ Don’t optimize with all the data, optimize with random samples
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Stochastic Gradient Descent

Draw lots of one-point samples, let their noise cancel out:

1 Start with initial guess θ, learning rate η
2 While ((not too tired) and (making adequate progress))

1 At tth iteration, pick random I uniformly
2 Set θ← θ− t−1η∇fI (θ)

3 Return final θ

Shrinking step-size by 1/t ensures noise in each gradient dies down
(Variants: put points in some random order, only check progress after going over each point

once, adjust 1/t rate, average a couple of random data points, etc.)

The sample code from the midterm works, though it could be made
more efficient
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Stochastic Newton’s Method

a.k.a. 2nd order stochastic gradient descent
1 Start with initial guess θ
2 While ((not too tired) and (making adequate progress))

1 At tth iteration, pick uniformly-random I
2 θ← θ− t−1H−1

I (θ)∇fI (θ)
3 Return final θ

+ all the Newton-ish tricks to avoid having to recompute the Hessian
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Stochastic Gradient Methods

Pros:
Each iteration is fast (and constant in n)
Never need to hold all data in memory
Does converge eventually

Cons:
Noise does reduce precision — more iterations to get within ε of
optimum than non-stochastic GD or Newton

Often low computational cost to get within statistical error of the
optimum
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Simulated Annealing

Use Metropolis to sample from a density ∝ e−f (θ)/T

Samples will tend to be near small values of f
Keep lowering T as we go along (“cooling”, “annealing”)

1 Set initial θ, T > 0
2 While ((not too tired) and (making adequate progress))

1 Proposal: Z← r(·|θ) (e.g., Gaussian noise)
2 Draw U ∼Unif(0,1)
3 Acceptance: If U < e−

f (Z)−f (θ)
T then θ← Z

4 Reduce T a little
3 Return final θ

Always moves to lower values of f , sometimes moves to higher
No derivatives, works for discrete problems, few guarantees
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Maximizing a multinomial likelihood

I roll dice n times; n1, . . .n6 count the outcomes
Likelihood and log-likelihood:

L(θ1,θ2,θ3,θ4,θ5,θ6) =
n!

n1!n2!n3!n4!n5!n6!

6
∏

i=1

θni
i

`(θ1,θ2,θ3,θ4,θ5,θ6) = log
n!

n1!n2!n3!n4!n5!n6!
+

6
∑

i=1

ni logθi

Optimize by taking the derivative and setting to zero:

∂ `

∂ θ1
=

n1

θ1
= 0

∴ θ1 = ∞

or n1 = 0
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We forgot that
∑6

i=1θi = 1
We could use the constraint to eliminate one of the variables

θ6 = 1−
5
∑

i=1

θi

Then solve the equations

∂ `

∂ θi
=

n1

θi
−

n6

1−
∑5

j=1θj

= 0

BUT eliminating a variable with the constraint is usually messy
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Lagrange Multipliers

g(θ) = c ⇔ g(θ)− c= 0

Lagrangian:

L (θ,λ) = f (θ)−λ(g(θ)− c)

= f when the constraint is satisfied
Now do unconstrained minimization over θ and λ:

∇θL |θ∗,λ∗ = ∇f (θ∗)−λ∗∇g(θ∗) = 0

∂L
∂ λ

�

�

�

�

�

θ∗,λ∗
= g(θ∗)− c= 0

optimizing Lagrange multiplier λ enforces constraint
More constraints, more multipliers
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Try the dice again:

L = log
n!

∏

i ni!
+

6
∑

i=1

ni log (θi)−λ
 

6
∑

i=1

θi− 1

!

∂L
∂ θi

�

�

�

�

�

θi=θ
∗
i

=
ni

θ∗i
−λ∗ = 0

ni

λ∗
= θ∗i

6
∑

i=1

ni

λ∗
=

6
∑

i=1

θ∗i = 1

λ∗ =
6
∑

i=1

ni ⇒ θ∗i =
ni

∑6
i=1 ni
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Thinking About the Lagrange Multipliers

Constrained minimized is generally higher than the unconstrained
Changing the constraint level c changes θ∗, f (θ∗)

∂ f (θ∗)

∂ c
=

∂L (θ∗,λ∗)
∂ c

= [∇f (θ∗)−λ∗∇g(θ∗)]
∂ θ∗

∂ c
− [g(θ∗)− c]

∂ λ∗

∂ c
+λ∗ = λ∗

λ∗ = Rate of change in optimal value as the constraint is relaxed
λ∗ = “Shadow price”: How much would you pay for minute change
in the level of the constraint
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Inequality Constraints

What about an inequality constraint?

h(θ)≤ d ⇔ h(θ)− d ≤ 0

The region where the constraint is satisfied is the feasible set
Roughly two cases:

1 Unconstrained optimum is inside the feasible set⇒ constraint
is inactive

2 Optimum is outside feasible set; constraint is active, binds or
bites; constrained optimum is usually on the boundary

Add a Lagrange multiplier; λ 6= 0⇔ constraint binds
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Mathematical Programming

Older than computer programming. . .

Optimize f (θ) subject to g(θ) = c and h(θ)≤ d
“Give us the best deal on f , keeping in mind that we’ve only got d to
spend, and the books have to balance”
Linear programming (Kantorovich, 1938)

f , h both linear in θ
θ∗ always at a corner of the feasible set
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Back to the Factory

Constraints:

40(cars)+ 60(trucks) ≤ 1600
1(cars)+ 3(trucks) ≤ 70

Revenue: $13k/car, $27k/truck
The feasible region:

0 10 20 30 40

0
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20
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cars

tru
ck
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Barrier Methods

(a.k.a. “interior point”, “central path”, etc.)

Having constraints switch on and off abruptly is annoying
especially with gradient methods

Fix µ> 0 and try minimizing

f (θ)−µ log (d− h(θ))

“pushes away” from the barrier — more and more weakly as µ→ 0

1 Initial θ in feasible set, initial µ
2 While ((not too tired) and (making adequate progress))

1 Minimize f (θ)−µ log (d− h(θ))
2 Reduce µ

3 Return final θ
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Constraints vs. Penalties

argmin
θ:h(θ)≤d

f (θ) ⇔ argmin
θ,λ

f (θ)−λ(h(θ)− d)

d doesn’t matter for doing the second minimization over θ
Constrained optimization ⇔ Penalized optimization

Constraint level d ⇔ Penalty factor λ
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Statistical Applications of Penalization

Minimize MSE of linear function β · x : ordinary least squares
regression
penalty on length of coefficient vector,

∑

β2
j : ridge regression

stabilizes estimate when data are noisy, p> n, collinear

penalty on sum of coefficients,
∑

|βj|: lasso
stability + drive small coefficients to 0 (“sparsity”)

Minimize MSE of function + penalty on curvature : spline
fit smooth regressions w/o assuming specific form

Smoothing over time, space, other relations
e.g., social or genetic ties

Usually decide on penalty factor/constraint level by trying to
predict out of sample
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R implementation

In penalty form, just chose λ and modify your objective function
constrOptim implements the barrier method
Try this:

factory <- matrix(c(40,1,60,3),nrow=2,
dimnames=list(c("labor","steel"),c("car","truck")))

available <- c(1600,70); names(available) <- rownames(factory)
prices <- c(car=13,truck=27)
revenue <- function(output) { return(-output %*% prices) }
plan <- constrOptim(theta=c(5,5),f=revenue,grad=NULL,

ui=-factory,ci=-available,method="Nelder-Mead")
plan$par

only works with constraints like uθ≥ c, so minus signs
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Summary

Stochastic optimization methods use probability in the search
Stochastic gradient descent samples the data; gives up precision
for speed
Simulated annealing randomly moves against the objective
function; escapes local minima

Constraints are usually part of optimization
Constrained optimum generally at the boundary of feasible set
Lagrange multipliers turn constrained problems into
unconstrained ones
Multipliers are prices: trade-off between tightening constraint
and worsening optimal value
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