
Characters and Strings
Basic Operations

Statistical Computing (36-350)
Lecture 19: Basic Character Manipulation

Cosma Shalizi, with thanks to Vince Vu

5 November 2012

36-350 Lecture 19

Characters and Strings
Basic Operations

Agenda

Strings and characters, what they are
Extracting parts of strings
Building new strings

READING: Matloff, chapter 11; R Cookbook, chapter 7

36-350 Lecture 19

Characters and Strings
Basic Operations

Why Characters?

Lots of data is really text: web pages, e-mail, free-form survey
answers
Even if you only care about numbers, it helps to be able to
extract them from text and manipulate them easily
Often we’re interested in the text itself

36-350 Lecture 19

Characters and Strings
Basic Operations

A Basic Distinction, and Its Blurring

Character Symbol in a written language; stuff you can enter at a
keyboard
letters, numerals, punctuation, space, newlines, etc.
’L’, ’i’, ’n’, ’c’, ’o’, ’l’

String A sequence of characters bound together Lincoln

R does not distinguish between single characters and strings

> mode("L")
[1] "character"
> mode("Lincoln")
[1] "character"
> typeof("Lincoln")
[1] "character"

36-350 Lecture 19

Characters and Strings
Basic Operations

Making Strings

Use single or double quotes to construct a string
use nchar to get the length of a string

> "Lincoln"
[1] "Lincoln"
> "Abraham Lincoln"
[1] "Abraham Lincoln"
> "Abraham Lincoln’s beard"
[1] "Abraham Lincoln’s beard"
> ’as Lincoln said, "Fondly do we hope"’
[1] "As Lincoln said, \"Fondly do we hope\""
> nchar(’As Lincoln said, "Fondly do we hope"’)
[1] 36 # count it offline

Double quotes are preferred, single quotes mostly for quoting stuff
with quotation marks

36-350 Lecture 19

Characters and Strings
Basic Operations

Escape Characters

Use the escape character \ to specify a literal, e.g., quotation marks
(see last)
also used to specify special characters: \n for newline, \t for tab, etc.

36-350 Lecture 19

Characters and Strings
Basic Operations

character Data Type

One of the atomic data types, like numeric or logical
Can go into scalars, vectors, arrays, lists
or be the type of a column in a data frame

"Abraham Lincoln’s beard" # a character scalar
c("Abraham", "Lincoln’s", "beard") # a character vector

36-350 Lecture 19

Characters and Strings
Basic Operations

An array of characters

> array(state.abb, dim=c(5,10))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] "AL" "CO" "HI" "KS" "MA" "MT" "NM" "OK" "SD" "VA"
[2,] "AK" "CT" "ID" "KY" "MI" "NE" "NY" "OR" "TN" "WA"
[3,] "AZ" "DE" "IL" "LA" "MN" "NV" "NC" "PA" "TX" "WV"
[4,] "AR" "FL" "IN" "ME" "MS" "NH" "ND" "RI" "UT" "WI"
[5,] "CA" "GA" "IA" "MD" "MO" "NJ" "OH" "SC" "VT" "WY"

36-350 Lecture 19

Characters and Strings
Basic Operations

Length of a vector vs. characters in a string

> state.name
[1] "Alabama" "Alaska" "Arizona" "Arkansas"
[5] "California" "Colorado" "Connecticut" "Delaware"
[9] "Florida" "Georgia" "Hawaii" "Idaho"

[13] "Illinois" "Indiana" "Iowa" "Kansas"
[17] "Kentucky" "Louisiana" "Maine" "Maryland"
[21] "Massachusetts" "Michigan" "Minnesota" "Mississippi"
[25] "Missouri" "Montana" "Nebraska" "Nevada"
[29] "New Hampshire" "New Jersey" "New Mexico" "New York"
[33] "North Carolina" "North Dakota" "Ohio" "Oklahoma"
[37] "Oregon" "Pennsylvania" "Rhode Island" "South Carolina"
[41] "South Dakota" "Tennessee" "Texas" "Utah"
[45] "Vermont" "Virginia" "Washington" "West Virginia"
[49] "Wisconsin" "Wyoming"
> length(state.name)
[1] 50
> nchar(state.name)
[1] 7 6 7 8 10 8 11 8 7 7 6 5 8 7 4 6 8 9 5 8 13 8 9

[24] 11 8 7 8 6 13 10 10 8 14 12 4 8 6 12 12 14 12 9 5 4 7 8
[47] 10 13 9 7

36-350 Lecture 19

Characters and Strings
Basic Operations

Character-Valued Variables

Work just like others, e.g., with vectors:

> president <- "Lincoln"
> nchar(president) # NOT 9
[1] 7
> presidents <- c("Reagan","Bush","Clinton","Cheney","Obama")
> presidents[3]
[1] "Clinton"
> presidents[-(1:3)]
[1] "Cheney" "Obama"

36-350 Lecture 19

Characters and Strings
Basic Operations

Displaying Characters

print() of course
cat() writes the string directly

> print("Abraham Lincoln")
[1] "Abraham Lincoln"
> cat("Abraham Lincoln")
Abraham Lincoln
> cat(presidents)
Reagan Bush Clinton Cheney Obama

Useful for interactive code or debugging

36-350 Lecture 19

Characters and Strings
Basic Operations

Whitespace

The space, " ", is a character
So is the empty string, ""
Multiple spaces in a row can be strings, " "
Newline character \n, tab character \t are also invisible but alter
display
All these are whitespace

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Substrings

Substring: a smaller string from the big string
A string is not a vector or a list, so we cannot use subscripts
([[]], []) to extract substrings
Use substr() instead;

y <- substr(x, start, stop)

character vector, first element (integer), last element (integer)

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

substr() vectorizes over all its arguments

> substr(presidents,1,2) # First two characters
[1] "Re" "Bu" "Cl" "Ch" "Ob"
> substr(presidents,nchar(presidents)-1,nchar(presidents)) # Last two
[1] "an" "sh" "on" "ey" "ma"
> substr(presidents,20,21) # No such substrings so return the null string
> substr(presidents,20,21)
[1] "" "" "" "" ""
> substr(presidents,7,7) # Explain!
[1] "" "" "n" "" ""

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Substitutions

substr can also be used to replace

> substr(presidents,1,2) <- "No"
> presidents
[1] "Noagan" "Nosh" "Nointon" "Noeney" "Noama"
> substr(presidents,1,2) <- c("Re","Bu","Cl","Ch","Ob")
> presidents
[1] "Reagan" "Bush" "Clinton" "Cheney" "Obama"

like diag either extracts the diagonal of a matrix, or replaces it

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Splitting

y <- strsplit(x,split)

Split each element of the character vector x at appearances of the
pattern split
Pattern is recycled over elements of x
Returns list of character vectors
For today, split is a string
Will see later how to make the splitting pattern much more flexible
than a single string

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

strsplit Examples

> strsplit("Reagan, Bush, Clinton, Cheney, Obama", split=", ")
[[1]]
[1] "Reagan" "Bush" "Clinton" "Cheney" "Obama"
> strsplit("Reagan, Bush, Clinton, Cheney, Obama", split=",") # Be careful
[[1]]
[1] "Reagan" " Bush" " Clinton" " Cheney" " Obama"
> strsplit("Reagan, Bush, Clinton, Cheney, Obama", split=" ") # More care
[[1]]
[1] "Reagan," "Bush," "Clinton," "Cheney," "Obama"
> strsplit(c("Reagan Bush Clinton Cheney Obama", "Ibrahim,Musa,Isa"),
+ split=c(" ",",")) # Recycling
[[1]]
[1] "Reagan" "Bush" "Clinton" "Cheney" "Obama"
[[2]]
[1] "Ibrahim" "Musa" "Isa"

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

strsplit Examples, cont’d.

> strsplit("Forescore and seven",split=";") # No split
[[1]]
[1] "Forescore and seven"
> strsplit("1863: 87", split=": ")
[[1]]
[1] "1863" "87"
> as.numeric(strsplit("1863: 87", split=": ")[[1]])
[1] 1863 87

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Creating New Strings Automatically

Casting to type character: follows printing conventions

> as.character(7.2) # Obvious
[1] "7.2"
> as.character(7.2e12) # Obvious
[1] "7.2e+12"
> as.character(c(7.2,7.2e12)) # Obvious
[1] "7.2" "7.2e+12"
> as.character(7.2e5) # Not quite so obvious
[1] "720000"

How about building one string from multiple parts?
formatted output, automatic generation of names, automatic generation of formulas

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

paste

paste() function — very flexible
with one vector argument, works like as.character:

> paste(41:45)
[1] "41" "42" "43" "44" "45"

With 2+ vector arguments, combines them with recycling:

> paste(presidents,41:45)
[1] "Reagan 41" "Bush 42" "Clinton 43" "Cheney 44" "Obama 45"
> paste(presidents,c("R","D")) # Not historically accurate!
[1] "Reagan R" "Bush D" "Clinton R" "Cheney D" "Obama R"
> paste(presidents,"(",c("R","D"),41:45,")")
[1] "Reagan (R 41)" "Bush (D 42)" "Clinton (R 43)"
[4] "Cheney (D 44)" "Obama (R 45)"

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

paste continued

Changing the separator between pasted-together terms:

> paste(presidents, " (", 41:45, ")", sep="_")
[1] "Reagan_ (_41_)" "Bush_ (_42_)" "Clinton_ (_43_)"
[4] "Cheney_ (_44_)" "Obama_ (_45_)"
> paste(presidents, " (", 41:45, ")", sep="")
[1] "Reagan (41)" "Bush (42)" "Clinton (43)" "Cheney (44)"
[5] "Obama (45)"

Exercise: what happens if you give sep a vector?

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

The example I mangled a bit in lecture

Recycling:

> paste(c("HW","Lab"),rep(1:11,times=rep(2,11)))
[1] "HW 1" "Lab 1" "HW 2" "Lab 2" "HW 3" "Lab 3" "HW 4"
[8] "Lab 4" "HW 5" "Lab 5" "HW 6" "Lab 6" "HW 7" "Lab 7"

[15] "HW 8" "Lab 8" "HW 9" "Lab 9" "HW 10" "Lab 10" "HW 11"
[22] "Lab 11"

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

paste continued some more

Producing one big string:

> paste(presidents, " (", 41:45, ")", sep="", collapse="; ")
[1] "Reagan (41); Bush (42); Clinton (43); Cheney (44); Obama (45)"

Default value of collapse is NULL, meaning return a vector
Non-NULL values are used as delimiters in a single big string
A function for writing regression formulas:

my.formula <- function(dep,indeps,df) {
rhs <- paste(colnames(df)[indeps], collapse="+")
return(paste(colnames(df)[dep], " ~ ", rhs, collapse=""))

}

e.g.,

> my.formula(2,c(3,5,7),df=state.x77)
[1] "Income ~ Illiteracy+Murder+Frost"

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Some Text

If we shall suppose that American slavery is one of those
offenses which, in the providence of God, must needs come,
but which, having continued through His appointed time, He
now wills to remove, and that He gives to both North and
South this terrible war as the woe due to those by whom the
offense came, shall we discern therein any departure from
those divine attributes which the believers in a living God
always ascribe to Him? Fondly do we hope, fervently do we
pray, that this mighty scourge of war may speedily pass away.
Yet, if God wills that it continue until all the wealth piled by
the bondsman’s two hundred and fifty years of unrequited
toil shall be sunk, and until every drop of blood drawn with
the lash shall be paid by another drawn with the sword, as
was said three thousand years ago, so still it must be said "the
judgments of the Lord are true and righteous altogether."

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

More text

> al2 <- readLines("al2.txt")
> length(al2)
[1] 58
> head(al2)
[1] "Fellow-Countrymen:"
[2] ""
[3] "At this second appearing to take the oath of the Presidential office there is"
[4] "less occasion for an extended address than there was at the first. Then a"
[5] "statement somewhat in detail of a course to be pursued seemed fitting and"
[6] "proper. Now, at the expiration of four years, during which public declarations"

al2 is a vector, one element per line of text
Make one long string; split the words

> al2 <- paste(al2, collapse=" ")
> al2.words <- strsplit(al2, split=" ")[[1]]
> head(al2.words)
[1] "Fellow-Countrymen:" "" "At"
[4] "this" "second" "appearing"

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Counting Words with table

Tabulate how often each word appears, put in order:

> wc <- table(al2.words)
> wc <- sort(wc,decreasing=TRUE)
> head(wc,20)
al2.words

the to and of that for be in it a this
54 26 25 24 22 11 9 8 8 8 7 7

war which all by we with as but
7 7 6 6 6 6 5 5

names(wc) gives all the distinct words in al2.words (types)
wc counts how often they appear (tokens)

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Funny Stuff
The null string is the third-most-common word:
> names(wc)[3]
[1] ""

Punctuation is treated as part of words:
> wc["years"]
years

3
> wc["years,"]
years,

1

Capitalization:
> wc["that"]
that

11
> wc["That"]
That

1

All of this can be fixed if we learn how to work with text patterns
and not just constants

36-350 Lecture 19

Characters and Strings
Basic Operations

Extracting and Replacing Substrings
Dividing Strings into Vectors
Combining Vectors into Strings

Summary

Text is data, just like everything else
substr for extracting and substituting
strsplit for turning strings into vectors
paste for turning vectors into strings
table for counting how many tokens belong to each type

Next time: regular expressions, for text patterns

36-350 Lecture 19

	Characters and Strings
	Basic Operations
	Extracting and Replacing Substrings
	Dividing Strings into Vectors
	Combining Vectors into Strings

