Lectures 20 and 21: Regular Expressions

36-350, Fall 2012
7 and 12 November 2012

With basic string-manipulation functions, we saw how to do things like split
up entries in a data file which are separated by commas

strsplit(text,split=",")

or by single spaces
strsplit(text,split=" ")

or even a comma followed by a space
strsplit(text,split=", ")

But we don’t know how to deal with situations like splitting on a comma,
optionally followed by some number of spaces.

Not only is it annoying to have such a simple thing defeat us, it’s an instance
of a much broader class of problems. If we’re trying to extract data from web-
pages, we may want to get rid of all the formatting instructions buried in the
source of the webpage. We might want to extract all the personal names from
a document which are preceded by titles (such as Mr., Ms., Miss, Dr.), without
knowing what those names are, or how long they are. And so forth.

What all these examples have in common is that we are looking, not for
particular strings, but for strings which fit certain patterns. This is something
the computer can do for us, if we can provide it with an algorithm to decide
whether or not a string any given conforms to the pattern.

There are such algorithms for certain kinds of text patterns, those which are
described in a formalism called regular expressions. We will not go into those
algorithms; instead, we will focus on crafting and using regular expressions, and
say just a little bit about their limitationﬁﬂ

1 The Rules of Regular Expressions

Every regular expression is a sequence of symbols, which specifies a set of text
strings that follow some pattern that — match the regular expression. A valid
regular expression must conform to certain rules of grammar; it gets interpreted

1See “Further Reading” at the end for more.

by the computer as rules for matching certain strings, but not others. Let us
build up the syntax for regexp — the rules for what makes a valid expression
— side by side with the semantics, how the expression is interpreted.

1.

Every string is a valid regular expression. It matches instances of that
string. So fly is a regular expression which gets matched to the end of
“fruitfly”, “horsefly”, “why walk when you can fly”, and “watch the fur
fly”. It does not match any part of “time flies like an arrow; fruit flies like
a banana; a banana flies poorly”.

The concatenation of two regular expressions is also another valid regu-
lar expression. Strings match the concatenation if and only if they match
each part, in order, without gaps. fly is really the concatenation of £, 1,

y.

We indicate the logical-OR of two regular expressions with the vertical
bar |. Thus fly|flies has matches in all the above strings. OR-ing can
be repeated: fly|flies|Fly|Flies.

We can precede any character with a special meaning in a regular expres-
sion, such as |, with the escape character, \. This keeps the character
from being interpreted in its special sense, just in its literal meaning.
Thus X\ |y matches part of “Pr(X]y)”, while X|y matches three times in
“syzygy”, and twice in “Xeroxy”.

. We indicate a set of characters, any of which will work, with square braces,

[1. Thus M[rs] matches “Mr” or “Ms”. (To match a literal], put it
first in the list: [1)}>] matches all right-hand delimiters.)

(a) We can indicate a range of characters inside braces with a dash:
[A-Z] indicates any upper-case letter, [4-7] the numerals 4, 5, 6, 7,
etc. To match a literal hyphen, put it first or last in the list.

(b) Some sets of characters are common enough that there are pre-defined
classes for them; see help(regexp) for a complete list. The ones
which are common enough to be worth mentioning here are:

e [:lower:] and [:upper:], the upper and lower case letters, and
[:alpha:], all letters of the alphabet;

[:digit:], the numerals 0-9

[:alnum:], the alphanumeric characters (union of [:alpha:]
and [:digit:])
[:punct:], all the punctuation marks

[:space:], all the whitespace characters (also \s)

\w, word characters, i.e., the alphanumeric characters and the
underscore, [[:alnum:]_] ; \W is every character not in the \w
class

(¢) We can indicate “every character ezcept those in this range” with
an initial caret or hat, -, inside the braces. Thus [“aeiou] matches
every character except a lower-case vowel. (To include a literal caret
in the list of matches, but it anywhere except the first position.)

(d) The special character . stands for the class of all characters. Thus
M..s matches “Miss”, “Mass”, “Mess”, “Mits”, “Mats”, “M11s”,
“M 87, etc. Note that the dot does not have to be enclosed in
brackets. Also note that when we have two (or more) dots in a row,
the matching characters do not have to be the same.

6. Any valid sub-expression can be repeated various numbers of times, by
means of quantifiers.

(a) + means, match if the expression is repeated one or more times.

(b) * means, match if the expression is repeated 0 or more times. (That
is, the expression is optional, but if it appears at all, it can appear
any number of times.)

(¢) ? means, match if the expression appears 0 or 1 times. (That is, the
expression is optional but cannot be repeated if it does show up.)

(d) {n} means, match if the expression is repeated exactly n times.
(e) {n,} means, match if the expression is repeated n or more times.

(f) {n,m} means, match if the expression is repeated between n and m
times (inclusive).

For instance, M[rs] [rs]?\.? matches “Mr.”, “Mr”, “Ms”, “Ms.”, “Mrs”,
“Mrs.” and “Mrs”, but not “Miss”. The regexp M[rs] [rs]?\.7[1+[A-Z]
matches Mr. A, Mrs. B (note the two spaces), but not Ms.C.

7. By default, all quantifiers are “greedy”, and match as many repetitions
as possible. Any quantifier followed by 7 will instead match the smallest
number of repetitions: If we try to match \[.+\] in [1] [j], it will match
the whole expression, whereas \[.+7\] will just match [i].

8. By default, quantifiers apply to the last character (or character range)
before they appear. Any valid-sub-expression however can be enclosed
in parentheses, (), for grouping. Thus H(TT)+ matches a single H, fol-
lowed by an even number of T’s. (HH|ITT)+ will match any pattern of
H’s and T’s, provided that each comes in blocks of even length — thus
“HHTTHHHHTTHH”, but not “HHTHHHHTTHH”.

9. $ means that a pattern can only match at the end of a line —e.g., [a-z,]$
finds lines that end in a lower-case letter or a comma — while ~ (outside
of braces!) similarly anchors a pattern at the beginning; ~[~A-Z] matches
strings that begin with something other than a capital letter. \< and
\> anchor to the beginning and end of words (respectively), \b matches
either the beginning or ending of a word (think “\b for boundary”), and
\B matches anywhere except the beginning and ending of words.

10. Finally, there are back-references, indicated by \1, \2, ...\9. These
refer to whatever matched has already the first, second, ...ninth sub-
expression in parentheses. Thus [HT]+ will match any string of H’s and
T’s, but ([HT])+\1 will only match strings of H’s and T’s where the
second have exactly repeats the first. The content of the back-reference is
sometimes called a “capture”, or “the captured string”.

1.0.1 Variables Containing Regular Expressions

You will have noticed that a regular expression is itself just a string. It can
therefore be stored in a character-type variable, built up using the usual string-
manipulation commands (e.g., paste), or itself subjected to regular expression
matching and modification. Some of this will be illustrated below.

2 Commands Using Regular Expressions

2.1 strsplit

We have already seen one command that uses a regular expression, strsplit.
Last time, we tried splitting al2 into words by splitting on spaces:

al2 <- readLines("http://www.stat.cmu.edu/"cshalizi/statcomp/lectures/19/al2.txt")
al2 <- paste(al2, collapse=" ")
al2.words <- strsplit(al2, split=" ")[[1]]

This produced some strange results, since punctuation marks got treated as
parts of words. We also got some weirdness from situations where there were
multiple spaces in a row.

al2.words <- strsplit(al2, split="(\\s|[[:punct:11)+")[[1]]

This looks for blocks containing only whitespace and/or punctuation. Unfor-
tunately this splits apart possessive, indicated by apostrophes; “men’s” splits
into “men” “s”. (If Lincoln used contractions, like “don’t”, they would also be
split.) We want to express either any number of white spaces, or at least one
punctuation mark followed by at least one space.

al2.words <- strsplit(al2, split="\\s+|([[:punct:]1]+[[:space:11+)") [[1]]

You can check that now, e.g., “men’s” is handled properly.

Notice, in all of this, that the regular expression gets enclosed in quotation
marks — we find it in to R as just another string. Because we want that string
to contain backslashes, we need to write double-backslashes. (Why?)

2.1.1 grep and grepl

grep’] scans a character vector for all occurrences of a regular expression. It
returns either the indices of the vector with matches, or the actual matching
strings.

To illustrate, consider the file ANSS. csv.html on the class website, which was
generated from http://www.quake.geo.berkeley.edu/anss/catalog-search.
html} it contains a catalog of every earthquake of at least magnitude 6 on the
Richter scale, from 1 January 2002 to 1 January 2012@ Here are its first dozen
lines:

<HTML><HEAD><TITLE>NCEDC_Search_Results</TITLE></HEAD><BODY>Your search parameters are:
catalog=ANSS

start_time=2002/01/01,00:00:00

end_time=2012/01/01,00:00:00

minimum_magnitude=6.0

maximum_magnitude=10

event_type=E

<PRE>
DateTime,Latitude,Longitude,Depth,Magnitude,MagType,NbStations,Gap,Distance,RMS,Source,EventID
2002/01/01 10:39:06.82,-55.2140,-129.0000,10.00,6.00,Mw,78,,,1.07,NEI,2002010140

The first lines are HTML formatting directions, and search parameters. The
actual data only begins in line 12. Every line of the data begins with a date
in the format YYYY/MM/DD. To extract which lines those are, and then the
actual pattern-matching line

> anss <- readLines("ANSS.csv.html",warn=FALSE)

> head(grep(x=anss,pattern=""[0-9]1{4}/[0-9]1{2}/[0-91{2}"))

[1] 11 12 13 14 15 16

> head(grep(x=anss,pattern=""[0-9]1{4}/[0-9]1{2}/[0-9]1{2}",value=TRUE))

[1] "2002/01/01 10:39:06.82,-55.2140,-129.0000,10.00,6.00,Mw,78,,,1.07,NEI,2002010140"
[2] "2002/01/01 11:29:22.73,6.3030,125.6500,138.10,6.30,Mw,236,,,0.90,NET,2002010140"
[3] "2002/01/02 14:50:33.49,-17.9830,178.7440,665.80,6.20,Mw,215,,,1.08,NEI,2002010240"
[4] "2002/01/02 17:22:48.76,-17.6000,167.8560,21.00,7.20,Mw,427,,,0.90,NEI,2002010240"
[6] "2002/01/03 07:05:27.67,36.0880,70.6870,129.30,6.20,Mw,431,,,0.87,NEI,2002010340"
[6] "2002/01/03 10:17:36.30,-17.6640,168.0040,10.00,6.60,Mw,386,,,1.14,NEI,2002010340"

Since it’s irritating to have to keep typing the regular expression over and
over, let’s store it in a variable:

> initial_date <- "~ [0-9]1{4}/[0-9]1{2}/[0-9]1{2}"

> all.equal(grep(x=anss,pattern=""[0-9]1{4}/[0-91{2}/[0-9]1{2}"),
+ grep(x=anss,pattern=initial_date))

[1] TRUE

2 Global regular expression parser (or printer); a name which has been fossilized in Unix
and related systems since 1973.

3The website is an interface to a much larger database, extending further back in time,
and capable of filtering geographically and by magnitude.

4The warn=FALSE option turns to readLines turns off a superfluous warning here about
the file not ending with a special end-of-file, or even end-of-line, character.

http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html

Note that if we want stuff which does not match our pattern, we have an
invert option:

> grep(x=anss,pattern=initia1_date,invert=TRUE,va1ue=TRUE)
[1] "<HTML><HEAD><TITLE>NCEDC_Search_Results</TITLE></HEAD><BODY>Your search parameters are:"
[2] "catalog=ANSS"
[3] "start_time=2002/01/01,00:00:00"
[4] "<1li>end_time=2012/01/01,00:00:00"
[6] "minimum_magnitude=6.0"
[6] "maximum_magnitude=10"
[7] "event_type=E"
[8] ""
[9] "<PRE>"
[10] "DateTime,Latitude,Longitude,Depth,Magnitude,MagType,NbStations,Gap,Distance,RMS,Source,EventID"
[11] "</PRE>"
[12] "</BODY></HTML>"

The related command grepl returns a Boolean vector, indicating whether
or not there were matches, for each element of the character vector:

> tail(grepl(x=anss,pattern=initial_date))
[1] TRUE TRUE TRUE TRUE FALSE FALSE

This information could be recovered from the value=FALSE version of grep,
of course, but grepl is much faster, when that’s what’s needed.

2.1.2 regexpr,gregexpr, regmatches

These all return information about where regular expressions are matched in a
string. regexpr returns the location of the first match (or -1 if there isn’t any
match), along with attributes like the length of the match. gregexpr works
similarly, but gives information about all matching locations, in a list. (Here,
and in many regular-expression functions, the initial g stands for “global”.)
regexpr and gregexpr return -1 for all elements of the vector they’r applied
to where there is no match.

regmatches takes strings and the output of regexpr or gregexpr, and re-
turns the actual matching strings.

For instance, this extracts all the (latitude, longitude) pairs of coordinates
from the earthquake data:

> one_geo_coord <- paste("-7[0-91+\\.[0-9]1{4}") # \\ to get a literal \

> pair_geo_coords <- paste(rep(one_geo_coord,2),collapse=",")

> have_coords <- grepl(x=anss,pattern=pair_geo_coords)

> coord.matches <- gregexpr(pattern=pair_geo_coords,text=anss[have_coords])
> coords <- regmatches(x=anss[have_coords],m=coord.matches)

> head(coords)

[[1]1]

[1] "-55.2140,-129.0000"

[[2]1]

[1] "6.3030,125.6500"

[[3]1]
[1] "-17.9830,178.7440"

[[41]

[1] "-17.6000,167.8560"
[sll

[1] "36.0880,70.6870"
[[61]

[1] "-17.6640,168.0040"

Notice that we give regmatches a vector, and it gives us back a list —
strictly, a list of character vectors of matches.
We can of course do more processing of the matches:

coords <- do.call(c,coords) # De-list-ify to vector
coord.pairs <- strsplit(coords,",") # Break apart latitude and longitude
coord.df <- do.call(rbind, coord.pairs) # De-list-ify to array
coord.df <- apply(coord.df,2,as.numeric) # Character to numeric
coord.df <- as.data.frame(coord.df)
colnames(coord.df) <- c("Latitude","Longitude")
head(coord.df)
Latitude Longitude

-55.214 -129.000

6.303 125.650

-17.983 178.744

-17.600 167.856

36.088 70.687

-17.664 168.004

V V V V V V V

DO WN

leading to things like Figure

Having to go indirectly through a data structure of matching locations, and
then to the actual matching strings, may seem needlessly indirect, but it allows
us to do things like easily count the number of matches, or how long they are,
without having to actually extract them, and we can even see what text in one
file corresponds to matching locations in another file.

2.2 regexec

Often, we only care about certain parts of the string which matches a regular
expression.

We might, for instance, want to find the names of all the people referred to
in a document as “Mr. X” or “Ms. Y”. The initial title matters, it lets us pick
out the names, but we only want the names, not the names-and-titles. Faced
with this text

Ms. Alice B. Tolkas (lately of Paris) will be discussing brownie recipes with
Mr. Harold Lee and Mr. Kumar Patel (of New Jersey), in the J. R. "Bob" Dobbs
Memorial Auditorium, at 3 p.m. The Rev. Mr. Robert Burton, of Brasenose
College, will moderate.

library (maps)
map ("world")
points(coord.df$Longitude,coord.df$Latitude,pch=19,col="red")

Figure 1: Geographic distribution of earthquakes, extracted from a data file
using regular expression matching.

we would want to get “Alice B. Tolkas”, “Harold Lee”, “Kumar Patel”, and
“Robert Burton”. How do we do this?
We can get much of the way with what we already know:

> alice_bob <- paste(readLines("alice-bob.txt"),collapse=" ")

> honorific_names <- "(Mr|Ms)\\. ([A-Z] ([a-z]+I\\.)[I1+)*[A-Z] [a-=z]+"
> regmatches(alice_bob,gregexpr(honorific_names,alice_bob))

[[1]1]

[1] "Ms. Alice B. Tolkas" "Mr. Harold Lee" "Mr. Kumar Patel"

[4] "Mr. Robert Burton"

(Unpack the regular expression: what it says expresses is that, after the title,
the period, and a space, a name consists of an alternation of words only whose
initial letter is capitalized, or capital letters with periods, ending in a word only
whose initial letter is capitalized. This will work for all the names given above,
and, manifestly, for many common Anglicized namesEI)

One use of parentheses in a regular expression is to mark a sub-pattern for
latter use, a capture group. The command regexec works like regexpr, but
returns information about all the capture groups. So let’s enclose the name part
in parentheses, and see what happens:

> honorific_names <- "(Mr|Ms)\\. (([A-Z]([a-z]+I\\.)[1+)*[A-Z] [a-z]+)"
> regmatches(alice_bob,regexec(honorific_names,alice_bob))

[[11]

[1] "Ms. Alice B. Tolkas" "Ms" "Alice B. Tolkas"

[4] ||B. n ||.||

We're getting the over-all matching string, and the matches for each parenthe-
sized sub-string — but only for the very first match. This is like what we’d see
if we ran regexpr instead of gregexpr. The usual work-around is to do things
in two stages:

> (name_matches <- regmatches(alice_bob,gregexpr (honorific_names,alice_bob)) [[1]])
[1] "Ms. Alice B. Tolkas" "Mr. Harold Lee" "Mr. Kumar Patel"

[4] "Mr. Robert Burton"

> (name_parts <- regmatches(name_matches,regexec(honorific_names,name_matches)))

[[111

[1] "Ms. Alice B. Tolkas" "Ms" "Alice B. Tolkas"
[4] IIB. n II‘II

[[2]]

[1] "Mr. Harold Lee" "Mr" "Harold Lee" "Harold "
[5] "arold"

5Tt will fail if it encounters a name written as “J B S Haldane” (as opposed to “J. B. S.
Haldane”), or “D’Arcy Wentworth Thompson”, or “John von Neumann”, or “Th. de Quincey”,
or “Esteban Maturin y Domanova”, or ‘“’Abd-ar-Rahman Abt Zayd ibn Muhmammad ibn
Muhammad ibn Khaldan”. It is surprisingly easy for text-analysis projects to run aground
on parochial assumptions like the one about the form of names embedded in the regular
expression. It is also surprisingly hard to make this point to programmers without seeming
smugly righteous.

[[311]

[1] "Mr. Kumar Patel" "Mr" "Kumar Patel"

[4] "Kumar " "umar"

[[4]1]

[1] "Mr. Robert Burton" "Mr" "Robert Burton"
[4] "Robert " "obert"

> (names <- sapply(name_parts,function(x) { x[3] }))

[1] "Alice B. Tolkas" "Harold Lee" "Kumar Patel"

[4] "Robert Burton"
Of course, if we also wanted the titles, we could get them too:

> (names_and_titles <- t(sapply(name_parts,function(x) { c(x[3],x[2]) })))

[,1] [,2]
[1,] "Alice B. Tolkas" "Ms"
2,] "Harold Lee" "Mr"
[3,] "Kumar Patel" "Mr"
[4,] "Robert Burton" "Mr"

2.3 Replacements

regmatches can be used to replace matching parts of a string (or strings), just
like substr.

> baking <- c("Bake your brownie at 350F for 7--10 minutes")

> regmatches(baking,gregexpr (pattern="[0-9]+F",text=baking)) <- "some temperature"
> baking

[1] "Bake your brownie at some temperature for 7--10 minutes"

More complex substitutions are of course possible. Note that one needs to
provide a list for multiple replacements to work properly.

baking <- c("Bake your brownie at 350F for 7--10 minutes, let cool to 100F before cutting")
F_temps <- regmatches(baking,gregexpr (" ([0-9]+)F",baking)) [[1]]

temps_in_F <- regmatches(F_temps,regexec("([0-9]+)F",F_temps))

temps_in_F <- as.numeric(sapply(temps_in_F,function(x){x[2]}))

temps_in_C <- signif((temps_in_F-32)%*100/180,2)

C_temps <- paste(temps_in_C,"C",sep="")

regmatches (baking,gregexpr (" ([0-9]+)F",baking)) <- list(C_temps)

baking

[1] "Bake your brownie at 180C for 7--10 minutes, let cool to 38C before cutting"

V V.V V V V VYV

The functions sub and gsub work like regexpr and gregexpr, but also take a
replace argument, which gets substituted for either the first or for all matches.
This can include back-references, numbered \1 through \9, to capture groups
in the match. Unlike assigning to regmatches, it does not change the string it’s
applied to, it returns a new string with the substitution:

To illustrate, this removes everyone’s honorifics:

10

> gsub(pattern=honorific_names,replacement="\\2",x=alice_bob)

[1] "Alice B. Tolkas (lately of Paris) will be discussing brownie recipes with
Harold Lee and Kumar Patel (of New Jersey), in the J. R. \"Bob\" Dobbs
Memorial Auditorium, at 3 p.m. The Rev. Robert Burton, of Brasenose College,
will moderate."

3 Challenge

ss.html contains the text of an actual webpage, “encountered in the Wild”ﬂ
Extract all the text, and only the text, discarding HTML formatting and hyper-
links (but not the text the link is anchored to).

4 Further Reading

J. E. F. Friedl’s Mastering Reqular Expressions is a very useful resource for more
advanced work. It focuses on the language Perl, which is a valuable resource
for intensive text processing, but most of the ideas apply very readily to other
tools which use regular expressions. (Perl’s syntax for regular expressions differ
very slightly from the “POSIX” standard which is the default in R, but there
are also options for using Perl’s syntax in R.)

http://regexlib.com/|is a useful website for regular expressions for various
purposes. These are user-contributed, so there’s no guarantee of correctness, but
they are free, and many of the contributors know what they’re doing.

The oldest treatment of regular expressions is [B], which can be seen as
a follow-up to earlier attempts [9] to understand the computational power of
simple nervous systems, how electrical impulses in the brain could possibly be
doing logic.

A regular expression is an example of a formal grammar, which is a set of
rules specifying which strings are part of a language, and which are not. There
is actually a hierarchy of increasingly powerful and expressive types of formal
grammars, first investigated by Noam Chomsky in the 1950s [2] SE Regular
expressions are at the very bottom of this hierarchy. Computationally, they
correspond to patterns which require only a fized (and finite) number of bits of
memory to decide — a computer with only one bit of memory can decide whether
an arbitrarily long string of heads and tails matches (H| (TT))+ (by tracking
whether it has seen an odd or an even number of tails since the last head).
Higher levels of the hierarchy require more memory; for instance, no finite mem-
ory can decide whether every string of heads and tails is a palindrome. Regular
expressions correspond to finite-state machines, or finite automata. There
are formalisms like those of regular expressions for describing higher levels of the

Shttp://simplystatistics.org/post/35187901781/nate-silver-does-it-again-will-pundits-finally-accept
7Chomsky, in turn, was drawing on an earlier tradition of work on formal languages and
mathematical logic by the Logical Positivists, in the 1930s and 1940s.

11

http://regexlib.com/
http://simplystatistics.org/post/35187901781/nate-silver-does-it-again-will-pundits-finally-accept

hierarchy, but the higher one goes in the hierarchy, the harder it is, computation-
ally, to decide whether a given string confirms to the grammar. Good introduc-
tions to this topic, which is one of the foundations of computer science, include
[10], [@], [6] and http://www.santafe.edu/~moore/automata-notes.pdf!

Probabilistic generalizations or extensions of regular expressions correspond
to various sorts of Markov models, where the state is not directly observable;
these are extremely important for natural-language processing algorithms. [II,
while older than some of you, is still very sound and readable. [7] is more
comprehensive.

12

http://www.santafe.edu/~moore/automata-notes.pdf

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE TO SEARCH
MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SCMETHING FORMATTED LIKE AN ADDRESS!

| I
i %8\%— IT5 HOPELESS!

_ T KNOW REGULAR
Eomene” || (L

5 Jos

\WHENEVER T LEARN A
NEW SKILL I ConCoCT
ELABORATE FANTASY
SCENARIOS WHERE (T
LETS ME SAVE THE DAY,

Figure 2: There are many uses for regular expressions; here, they are shown
fueling a programmer’s fantasy life. (From http://xkcd.com/208/))

13

http://xkcd.com/208/

References

[1]

2]

[3]
[4]

Charniak, Eugene (1993). Statistical Language Learning. Cambridge, Mas-
sachusetts: MIT Press.

Chomsky, Noam (1956). “Three Models for the Description of Language.”
IRE Transactions on Information Theory, 2: 113-124.

— (1957). Syntactic Structures. The Hauge: Mouton.

Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata
Theory, Languages, and Computation. Reading: Addison-Wesley. 2nd
edition of Formal Languages and Their Relation to Automata, 1969.

Kleene, S. C. (1956). “Representation of Events in Nerve Nets and Finite
Automata.” In Automata Studies (Claude E. Shannon and John McCarthy,
eds.), pp. 3-41. Princeton, New Jersey: Princeton University Press.

Lewis, Harry R. and Christos H. Papadimitriou (1998). Elements of the
Theory of Computation. Upper Saddle River, New Jersey: Prentice-Hall,
2nd edn.

Manning, Christopher D. and Hinrich Schiitze (1999). Foundations of Sta-
tistical Natural Language Processing. Cambridge, Massachusetts: MIT
Press.

McCulloch, Warren S. (1965). Embodiments of Mind. Cambridge, Mas-
sachusetts: MIT Press.

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the
ideas immanent in nervous activity.” Bulletin of Mathematical Biophysics,
5: 115-133. Reprinted in [8, pp. 19-39].

Minsky, Marvin (1967). Computation: Finite and Infinite Machines. En-
glewood Cliffs, New Jersey: Prentice-Hall.

14

	The Rules of Regular Expressions
	Variables Containing Regular Expressions

	Commands Using Regular Expressions
	strsplit
	grep and grepl
	regexpr,gregexpr, regmatches

	regexec
	Replacements

	Challenge
	Further Reading

