Lecture 25: Database Notes

36-350, Fall 2012*
November 30, 2012

The examples here use http://www.stat.cmu.edu/~cshalizi/statcomp/
labs/baseball.db, which is derived from Lahman’s baseball database (http:
//wwu .seanlahman.com/baseball-archive/statistics/), more fully docu-
mented at http://seanlahman.com/files/database/readmeb8. txt.

A database consists of one or more tables; each table is like a data-frame in
R, where each record is like a data-frame’s row, and each field is like a column.
Related tables are linked by the use of unique identifiers or keys (.e.g., patient
IDs).

A database server hosts one or more databases. The server controls access to
the databases, and handles the actual business of reading out information from
the tables efficiently (or writing information to them). Database clients are
programs which interact with the server. (Think of the difference between the
Web browser program on your computer or phone, and the Web server program
which actually hosts the website.)

The main thing you will be doing with a database is issuing queries — asking
it to retrieve selected parts of a database. Just as we used regular expressions
to specify patterns of text, we need a special syntax to specify queries unam-
biguously. The de facto standard is the Structured Query Language, SQL. Most
popular database server programs are designed to work with it, sometimes with
slight variants from program to program.

*With thanks to Vince Vu


http://www.stat.cmu.edu/~cshalizi/statcomp/labs/baseball.db
http://www.stat.cmu.edu/~cshalizi/statcomp/labs/baseball.db
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://seanlahman.com/files/database/readme58.txt

Common Operations

List available databases

List tables in a database

List fields in a table

Describe the types of the columns in a table
Change the default database

SQL command

SHOW DATABASES

SHOW TABLES IN database
SHOW COLUMNS 1IN table
DESCRIBE table

USE database

SQLite variant
.databases
.tables

.schema table



Select

The main tool is the SELECT command: you give it a specification of what
information you want, and it returns a table:

SELECT columns or computations
FROM table
WHERE condition
GROUP BY columns
HAVING condition
ORDER BY column [ASC|DESC]
LIMIT offset,count;

Most of this is optional (but not the semi-colon at the end).

0.1 Selecting Columns

Columns get specified by name (which are case-sensitive), with multiple columns
separated by commas. * specifies all columns.

SELECT PlayerID,yearID,AB,H FROM Batting;

returns a sub-table, with the specified columns, from the table Batting.
SELECT * FROM Salaries;

returns all columns from the table Salaries.

SELECT * FROM Salaries ORDER BY Salary;

re-organizes so the records are sorted by the Salary field. The default is as-
cending order.

SELECT * FROM Salaries ORDER BY Salary DESC;
reverses the order.
SELECT * FROM Salaries ORDER BY Salary DESC LIMIT 10;

will return all columns for the records with the 10 highest salaries.

0.2 Selecting Records

SQL uses Boolean expressions in the WHERE clause to decide which records
get selected, like subset () or which() in R.

SELECT PlayerID,yearID,AB,H FROM Batting WHERE AB > 100 AND H > 0O;

will return the specified columns from Batting, but only for the records where
the AB field is over 100 and the H field is over O.



0.3 Calculated Columns

We can have the server do some calculations for us as part of the query, in-
cluding simple arithmetic and basic summaries, like SUM, AVG, MIN, MAX, COUNT,
VAR_SAMP, STDDEV_SAMP.

SELECT MAX(AB) FROM Batting;
SELECT MIN(AB), AVG(AB), MAX(AB) FROM Batting;

do what you’d expected.
SELECT AB, H, H/AB FROM Batting;

doesn’t do quite what you expect — since H and AB are both integers, H/AB is
just the integer part of the ratio.

SELECT AB,H,H/CAST(AB AS REAL) FROM Batting;

gives the correct floating-point ratio.
We can give calculated columns names, if we want to refer to them, e.g., for
sorting:

SELECT PlayerID,yearID,H/CAST(AB AS REAL) AS BattingAvg FROM Batting
ORDER BY BattingAvg DESC LIMIT 10;

returns the records with the 10 highest values of our new field BattingAvg.

0.4 Aggregation

To aggregate, i.e., to do calculations on grouped subsets of records, we use GROUP
BY clauses, much like dply in R.

SELECT playerID, SUM(salary) FROM Salaries GROUP BY playerID

gives the total salary paid over time to each player.
These calculations can be named:

SELECT playerID, SUM(salary) AS totalSalary FROM Salaries GROUP BY playerID
ORDER BY totalSalary DESC LIMIT 10;

Exercise: What would
SELECT salary, COUNT(playerID) FROM Salaries GROUP BY salary

do?



0.5 Selecting Records with Aggregation

SELECT processes part of what you tell it to do in order: WHERE clauses come
first (initial selection of records), then GROUP BY (aggregation of records),
then HAVING for post-aggregation selection.

SELECT playerID, SUM(salary) AS totalSalary FROM Salaries GROUP BY playerID
HAVING totalSalary > 200000000

will return grouped records (i.e., players) where the total salary exceeds 200
million.



JOIN

If information is split across tables, we need to join it back together. The
operation which does so is called a “join”, naturally enough, which in SQL
shows up as a JOIN clause in SELECT.

The most natural kind of JOIN is where we find records in two tables with
matching keys (unique identifiers), and merge the sets of fields.

(More generally, we look at every combination of a record from table A with
a record from table B, and ask whether the pair satisfies some “JOIN condition”
or “JOIN predicate”; if it does, the pair goes in to the new table as a single
record. In the obvious sort of JOIN, the condition is “do the keys match?”)

SELECT namelast,nameFirst,yearID,AB,H FROM Master INNER JOIN Batting
USING(playerID);

The INNER JOIN ... USING part creates a (virtual) table, merging the fields
from Master and Batting where playerID matches.
An equivalent:

SELECT namelast,nameFirst,yearID,AB,H FROM Master INNER JOIN Batting
ON Master.playerID == Batting.playerID;

This form can be used when the key has different names in different tables.
If there is just one field in common between two tables, we can write NAT-
URAL JOIN instead of INNER JOIN, and skip USING or ON.

SELECT namelast,nameFirst,yearID,AB,H FROM Master NATURAL JOIN Batting;

A single SELECT can contain multiple JOINs, to combine more than two
tables:

SELECT namelast,nameFirst,yearID,AB,H,salary
FROM Master NATURAL JOIN Batting NATURAL JOIN Salaries
ORDER BY salary DESC LIMIT 10;

Two tables may have columns with the same name which we want to keep
track of separately; then the SQL convention is to refer to them as table.var.
The AS command lets us rename them inside a SELECT:

SELECT patient.last_name AS patname,
physicians.last_name AS docname
FROM patients NATURAL JOIN physicians;

AS can also be used to abbreviate or rename tables:

SELECT p.last_name AS patname,
d.last_name AS docname
FROM patients AS p NATURAL JOIN physicians AS d;



Accessing Databases from R

Each database management system (DBMS) has a somewhat different protocol
for actually dealing with servers. Rather than trying to master all of them,
the sensible approach in R is to use the DBI package, which provides a single
uniform interface, no matter what the DBMS. The programmers of DBI have
to figure out how to deal with them, but you don’t. The sub-programs which
handle different DBMS’s are called drivers; see http://cran.r-project.org/
package=DBI.

install.packages("DBI", dependencies = TRUE) # Install DBI
install.packages("RSQLite", dependencies = TRUE) # Install driver for SQLite

R uses persistent objects called “connections” to keep track of which database
server is being used for what taskE] So the procedure goes like so:

e Load the driver for the DBMS you’ll be dealing with.
e Establish a connection to the database server.

Interact with the DBMS.

Close the connection.

Unload the driver.

Load Driver, Establish Connection

library(RSQLite)
drv <- dbDriver(’SQLite’)
con <- dbConnect(drv, dbname="baseball.db")

con now is the name for the connection to the SQLite database baseball.db.
We could also give dbConnect arguments host (an Internet address), use (a
user name) and password.

Interacting with a Database through DBI

The basic commands:

dbListTables(conn) # Get tables in the database (returns vector)
dbListFields(conn, name) # List fields in a table
dbReadTable(conn, name) # Import a table as a data frame

The really useful one:

dbGetQuery(conn, statement)

LConnections actually get used for other things as well, like file input/output.


http://cran.r-project.org/package=DBI
http://cran.r-project.org/package=DBI

The second argument is an SQL query, which gets issued to the database; it
returns a data frame. When building the statement, as when building a regular
expression, it often helps to use paste:

df <- dbGetQuery(con, paste(
"SELECT namelast,nameFirst,yearID,salary",
"FROM Master NATURAL JOIN Salaries"))

Disconnecting and unloding the driver

There’s an overhead involved in keeping these around, so remove them once
they’re not needed:

dbDisconnect (con)
dbUnloadDriver (drv)



	Selecting Columns
	Selecting Records
	Calculated Columns
	Aggregation
	Selecting Records with Aggregation

