
Final Project

36-350, Fall 2013

You will work on projects in groups of 2–4. You will upload a text file to
Blackboard with your proposed group, and your rankings of at least 3 projects,
by 11:59 pm on Thursday 14 November.

If you do not wish to propose a group, you will be assigned one; I also reserve
the right to adjust groups. (Likewise, if you do not state preferences, preferences
will be assigned to you.) If you have an idea for a project not on this list, you
are welcome to propose it, but please do so before the deadline.

There will be three components to the project: an oral presentation during
the final examination period, (approximately 15 minutes long), a written report
describing the problem and what you did to solve it, and (documented) code.

1. Drunken chessmaster Imagine playing chess with only one piece (a knight,
rook, queen, or bishop, . . . ) by always selecting your next move at random
from all possible legal moves. This is something a drunken chessmaster
might do. How many moves would it take for your piece to return to
where it started? Does it matter where you start? If you play this way
for a very long time and then stop which square will you most likely land
on? You will write code to simulate this process, to estimate averages and
distributions of answers to these questions and others like it.

2. Stepwise model selection In regression problems that often come up in data
mining, there are very many covariates X1, . . . , Xp that are potentially
related with the response Y . An important problem is determining which
subset of variables are the best predictors of Y . When p is large, using
all p variables may be a bad idea; it is also computationally intractable to
try every possible subset of the p-variables. Instead one may try fitting a
sequence of models in a greedy manner by starting from 0 variables and
then adding one variable at a time by choosing the “best” variable at each
step according to some criterion. Alternatively, start with a full model
using all p variables and then remove the “worst” variable at each step.
We will provide you with data consisting of a vector of responses Y and
a matrix of variables X. You will write code to fit a sequence of linear
regression models using ordinary least squares and some criterion from
adding/removing variables to the model. Your code will also perform
cross-validation to estimate the mean squared prediction error of each
candidate model and to choose the best one.

3. Word frequency A classical claim in quantitative linguistics is Zipf’s law,

1



which says that the number of words from the dictionary which appear k
or more times in a large text or collection of texts is proportional to k−α:
a few words appear a very large number of times, a vast number of words
appear only once. you will get a canonical literary text in electronic form;
you will write code to estimate α from the text, plot the fitted distribution
and the data, and assess uncertainty and goodness of fit.

4. Document classification You will get news stories from the New York
Times with known subject classification. You will write code to extract
the text, turn the word frequencies into features, and automatically sort
the text into categories, using regression-like methods. We will provide
texts for two groups, one learning to discriminate articles about art from
articles about music, the other learning to discriminate news stories from
editorials.

5. Markov chain language models A simple statistical model of language is
that words follow a Markov chain, with the next word being independent
of earlier words given the latest word. You will write code to fit this model
to a collection of documents, to simulate new text from it, and to compare
it to a second-order Markov chain, where the next word is independent of
earlier words given the latest two words.

6. Markov chain genetic models DNA consists of a series of distinct “base”
molecules, conventionally written A, C, G, T. The sequence of bases spec-
ifies the genetic information used to grow organisms, such as yourselves.
A simple statistical model of DNA is that bases follow a Markov chain,
with the next base being independent of earlier bases given the latest base.
You will write code to fit this model to the genome of a real organism (the
social slime mold Dictyostelium discoideum), to simulate new DNA from
it, and to compare it to kth-order Markov chains, where the next base is
independent of earlier bases given the latest k bases.

7. High-dimensional two-sample tests The Kolmogorov-Smirnov test (ks.test
in R) is a simple but powerful procedure for testing whether two samples
come from the same distribution. It only works for one-dimensional data.
You will write software to take two multi-dimensional data sets, randomly
project them down to one-dimensional distributions, and apply the K-
S test to their projections. You will need to take into account multiple
testing issues.

8. Income Distributions of the Rich and Anonymous The “World Top Income
Database” (http://topincomes.g-mond.parisschoolofeconomics.eu)
provides data on the very highest income taxpayers, across countries and
across multiple years. Many economic models say that the upper tail
of the income distribution should follow a Pareto distribution, with the
number of people whose income exceeds x being ∝ x−α, but do not say
what α should be (other than > 1). You will obtain the data, estimate

2

http://topincomes.g-mond.parisschoolofeconomics.eu


α over countries and years, and produce visual comparisons of trends in
inequality over time and space.

9. Red State, Blue State, Rich State, Poor State Over the last few decades,
states with a higher average income level have tended to vote more for
the Democratic Party in presidential elections, and poor states for the
Republican Party. Within each state, however, lower-income individuals
have tended to be more likely to vote for the Democrats, and higher-income
people to vote Republican. Using data (which will be supplied) from
the 2008 National Election Survey (the most recent available), fit logistic
regression models summarizing how voting choices depend on individual
income, using split/apply/combine to analyze each state. Examine how
the state-by-state income coefficients vary with state-level characteristics.

10. Earthquake intensities Using data http://www.quake.geo.berkeley.edu/
anss/catalog-search.html, fit time-varying intensity models for earth-
quakes in California, Italy, and Japan, since 1970. Determine if variation
in intensity in each region exceeds what would be expected under a simple
constant-intensity Poisson process.

11. Locality-sensitive hashing “Hash functions” are functions that take in com-
plicated data objects and return numbers, which are generally compressed
(and not unique) IDs or labels for the objects. They have many uses in
programming, like checking whether files have been changed, or lists which
store and retrieve information by value rather than by position. “Locality-
sensitive hash functions” are special hash functions which are designed so
that similar objects will, with high probability, get similar hashed values.
If we start with a complex object, like a document or a sound file, and want
to find all of the other objects in a large collection which are similar to it,
comparing the target object to all the others in the collection is very slow;
locality-sensitive hashing is used to limit our search to promising candi-
date objects, ones which are likely to be close to the target. This project
will implement locality-sensitive hashing, from scratch, for documents.

3

http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html

