
Lecture 2, More Data Structures
36-350

27 August 2014

Agenda

• Arrays
• Matrices
• Lists
• Dataframes
• Structures of structures

Vector structures, starting with arrays

Many data structures in R are made by adding bells and whistles to vectors, so “vector structures”

Most useful: arrays

x <- c(7, 8, 10, 45)
x.arr <- array(x,dim=c(2,2))
x.arr

[,1] [,2]
[1,] 7 10
[2,] 8 45

dim says how many rows and columns; filled by columns

Can have 3, 4, . . . n dimensional arrays; dim is a length-n vector

=== Some properties of the array:

dim(x.arr)

[1] 2 2

is.vector(x.arr)

[1] FALSE

is.array(x.arr)

[1] TRUE

===

1

typeof(x.arr)

[1] "double"

str(x.arr)

num [1:2, 1:2] 7 8 10 45

attributes(x.arr)

$dim
[1] 2 2

typeof() returns the type of the elements

str() gives the structure: here, a numeric array, with two dimensions, both indexed 1–2, and then the
actual numbers

Exercise: try all these with x

Accessing and operating on arrays

Can access a 2-D array either by pairs of indices or by the underlying vector:

x.arr[1,2]

[1] 10

x.arr[3]

[1] 10

=== Omitting an index means “all of it”:

x.arr[c(1:2),2]

[1] 10 45

x.arr[,2]

[1] 10 45

Functions on arrays

Using a vector-style function on a vector structure will go down to the underlying vector, unless the function
is set up to handle arrays specially:

2

which(x.arr > 9)

[1] 3 4

=== Many functions do preserve array structure:

y <- -x
y.arr <- array(y,dim=c(2,2))
y.arr + x.arr

[,1] [,2]
[1,] 0 0
[2,] 0 0

Others specifically act on each row or column of the array separately:

rowSums(x.arr)

[1] 17 53

We will see a lot more of this idea

Example: Price of houses in PA

Census data for California and Pennsylvania on housing prices, by Census “tract”

calif_penn <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/01/calif_penn_2011.csv")
penn <- calif_penn[calif_penn[,"STATEFP"]==42,]
coefficients(lm(Median_house_value ~ Median_household_income, data=penn))

(Intercept) Median_household_income
-26206.564 3.651

Fit a simple linear model, predicting median house price from median household income

=== Census tracts 24–425 are Allegheny county

Tract 24 has a median income of $14,719; actual median house value is $34,100 — is that above or below
what’s?

34100 < -26206.564 + 3.651*14719

[1] FALSE

Tract 25 has income $48,102 and house price $155,900

155900 < -26206.564 + 3.651*48102

[1] FALSE

3

What about tract 26?

===

We could just keep plugging in numbers like this, but that’s - boring and repetitive - error-prone (what if I
forget to change the median income, or drop a minus sign from the intercept?) - obscure if we come back to
our work later (what are these numbers?)

Use variables and names

penn.coefs <- coefficients(lm(Median_house_value ~ Median_household_income, data=penn))
penn.coefs

(Intercept) Median_household_income
-26206.564 3.651

allegheny.rows <- 24:425
allegheny.medinc <- penn[allegheny.rows,"Median_household_income"]
allegheny.values <- penn[allegheny.rows,"Median_house_value"]
allegheny.fitted <- penn.coefs["(Intercept)"]+penn.coefs["Median_household_income"]*allegheny.medinc

===

plot(x=allegheny.fitted, y=allegheny.values,
xlab="Model-predicted median house values",
ylab="Actual median house values",
xlim=c(0,5e5),ylim=c(0,5e5))

abline(a=0,b=1,col="grey")

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0e
+

00
2e

+
05

4e
+

05

Model−predicted median house values

A
ct

ua
l m

ed
ia

n
ho

us
e

va
lu

es

4

Running example: resource allocation (“mathematical program-
ming”)

Factory makes cars and trucks, using labor and steel

• a car takes 40 hours of labor and 1 ton of steel
• a truck takes 60 hours and 3 tons of steel
• resources: 1600 hours of labor and 70 tons of steel each week

Matrices

In R, a matrix is a specialization of a 2D array

factory <- matrix(c(40,1,60,3),nrow=2)
is.array(factory)

[1] TRUE

is.matrix(factory)

[1] TRUE

could also specify ncol, and/or byrow=TRUE to fill by rows.

Element-wise operations with the usual arithmetic and comparison operators (e.g., factory/3)

Compare whole matrices with identical() or all.equal()

Matrix multiplication

Gets a special operator

six.sevens <- matrix(rep(7,6),ncol=3)
six.sevens

[,1] [,2] [,3]
[1,] 7 7 7
[2,] 7 7 7

factory %*% six.sevens # [2x2] * [2x3]

[,1] [,2] [,3]
[1,] 700 700 700
[2,] 28 28 28

What happens if you try six.sevens %*% factory?

5

Multiplying matrices and vectors

Numeric vectors can act like proper vectors:

output <- c(10,20)
factory %*% output

[,1]
[1,] 1600
[2,] 70

output %*% factory

[,1] [,2]
[1,] 420 660

R silently casts the vector as either a row or a column matrix

Matrix operators

Transpose:

t(factory)

[,1] [,2]
[1,] 40 1
[2,] 60 3

Determinant:

det(factory)

[1] 60

The diagonal

The diag() function can extract the diagonal entries of a matrix:

diag(factory)

[1] 40 3

It can also change the diagonal:

6

diag(factory) <- c(35,4)
factory

[,1] [,2]
[1,] 35 60
[2,] 1 4

Re-set it for later:

diag(factory) <- c(40,3)

Creating a diagonal or identity matrix

diag(c(3,4))

[,1] [,2]
[1,] 3 0
[2,] 0 4

diag(2)

[,1] [,2]
[1,] 1 0
[2,] 0 1

Inverting a matrix

solve(factory)

[,1] [,2]
[1,] 0.05000 -1.0000
[2,] -0.01667 0.6667

factory %*% solve(factory)

[,1] [,2]
[1,] 1 0
[2,] 0 1

Why’s it called “solve”" anyway?

Solving the linear system A~x = ~b for ~x:

7

available <- c(1600,70)
solve(factory,available)

[1] 10 20

factory %*% solve(factory,available)

[,1]
[1,] 1600
[2,] 70

Names in matrices

We can name either rows or columns or both, with rownames() and colnames()

These are just character vectors, and we use the same function to get and to set their values

Names help us understand what we’re working with

Names can be used to coordinate different objects

===

rownames(factory) <- c("labor","steel")
colnames(factory) <- c("cars","trucks")
factory

cars trucks
labor 40 60
steel 1 3

available <- c(1600,70)
names(available) <- c("labor","steel")

===

output <- c(20,10)
names(output) <- c("trucks","cars")
factory %*% output # But we've got cars and trucks mixed up!

[,1]
labor 1400
steel 50

factory %*% output[colnames(factory)]

[,1]
labor 1600
steel 70

8

all(factory %*% output[colnames(factory)] <= available[rownames(factory)])

[1] TRUE

Notice: Last lines don’t have to change if we add motorcycles as output or rubber and glass as inputs
(abstraction again)

Doing the same thing to each row or column

Take the mean: rowMeans(), colMeans(): input is matrix, output is vector. Also rowSums(), etc.

summary(): vector-style summary of column

colMeans(factory)

cars trucks
20.5 31.5

summary(factory)

cars trucks
Min. : 1.0 Min. : 3.0
1st Qu.:10.8 1st Qu.:17.2
Median :20.5 Median :31.5
Mean :20.5 Mean :31.5
3rd Qu.:30.2 3rd Qu.:45.8
Max. :40.0 Max. :60.0

=== apply(), takes 3 arguments: the array or matrix, then 1 for rows and 2 for columns, then name of the
function to apply to each

rowMeans(factory)

labor steel
50 2

apply(factory,1,mean)

labor steel
50 2

What would apply(factory,1,sd) do?

Lists

Sequence of values, not necessarily all of the same type

9

my.distribution <- list("exponential",7,FALSE)
my.distribution

[[1]]
[1] "exponential"
##
[[2]]
[1] 7
##
[[3]]
[1] FALSE

Most of what you can do with vectors you can also do with lists

Accessing pieces of lists

Can use [] as with vectors
or use [[]], but only with a single index
[[]] drops names and structures, [] does not

is.character(my.distribution)

[1] FALSE

is.character(my.distribution[[1]])

[1] TRUE

my.distribution[[2]]^2

[1] 49

What happens if you try my.distribution[2]ˆ2? What happens if you try [[]] on a vector?

Expanding and contracting lists

Add to lists with c() (also works with vectors):

my.distribution <- c(my.distribution,7)
my.distribution

[[1]]
[1] "exponential"
##
[[2]]
[1] 7

10

##
[[3]]
[1] FALSE
##
[[4]]
[1] 7

=== Chop off the end of a list by setting the length to something smaller (also works with vectors):

length(my.distribution)

[1] 4

length(my.distribution) <- 3
my.distribution

[[1]]
[1] "exponential"
##
[[2]]
[1] 7
##
[[3]]
[1] FALSE

Naming list elements

We can name some or all of the elements of a list

names(my.distribution) <- c("family","mean","is.symmetric")
my.distribution

$family
[1] "exponential"
##
$mean
[1] 7
##
$is.symmetric
[1] FALSE

my.distribution[["family"]]

[1] "exponential"

my.distribution["family"]

$family
[1] "exponential"

11

===

Lists have a special short-cut way of using names, $ (which removes names and structures):

my.distribution[["family"]]

[1] "exponential"

my.distribution$family

[1] "exponential"

Names in lists (cont’d.)

Creating a list with names:

another.distribution <- list(family="gaussian",mean=7,sd=1,is.symmetric=TRUE)

Adding named elements:

my.distribution$was.estimated <- FALSE
my.distribution[["last.updated"]] <- "2011-08-30"

Removing a named list element, by assigning it the value NULL:

my.distribution$was.estimated <- NULL

Key-Value pairs

Lists give us a way to store and look up data by name, rather than by position

A really useful programming concept with many names: key-value pairs, dictionaries, associative arrays,
hashes

If all our distributions have components named family, we can look that up by name, without caring where
it is in the list

Dataframes

Dataframe = the classic data table, n rows for cases, p columns for variables

Lots of the really-statistical parts of R presume data frames penn from last time was really a dataframe

Not just a matrix because columns can have different types

Many matrix functions also work for dataframes (rowSums(), summary(), apply())

but no matrix multiplying dataframes, even if all columns are numeric

===

12

a.matrix <- matrix(c(35,8,10,4),nrow=2)
colnames(a.matrix) <- c("v1","v2")
a.matrix

v1 v2
[1,] 35 10
[2,] 8 4

a.matrix[,"v1"] # Try a.matrix$v1 and see what happens

[1] 35 8

===

a.data.frame <- data.frame(a.matrix,logicals=c(TRUE,FALSE))
a.data.frame

v1 v2 logicals
1 35 10 TRUE
2 8 4 FALSE

a.data.frame$v1

[1] 35 8

a.data.frame[,"v1"]

[1] 35 8

a.data.frame[1,]

v1 v2 logicals
1 35 10 TRUE

colMeans(a.data.frame)

v1 v2 logicals
21.5 7.0 0.5

Adding rows and columns

We can add rows or columns to an array or data-frame with rbind() and cbind(), but be careful about
forced type conversions

rbind(a.data.frame,list(v1=-3,v2=-5,logicals=TRUE))

v1 v2 logicals
1 35 10 TRUE
2 8 4 FALSE
3 -3 -5 TRUE

13

rbind(a.data.frame,c(3,4,6))

v1 v2 logicals
1 35 10 1
2 8 4 0
3 3 4 6

Structures of Structures

So far, every list element has been a single data value

List elements can be other data structures, e.g., vectors and matrices:

plan <- list(factory=factory, available=available, output=output)
plan$output

trucks cars
20 10

Internally, a dataframe is basically a list of vectors

Structures of Structures (cont’d.)

List elements can even be other lists
which may contain other data structures
including other lists
which may contain other data structures. . .

This recursion lets us build arbitrarily complicated data structures from the basic ones

Most complicated objects are (usually) lists of data structures

Example: Eigenstuff

eigen() finds eigenvalues and eigenvectors of a matrix
Returns a list of a vector (the eigenvalues) and a matrix (the eigenvectors)

eigen(factory)

$values
[1] 41.556 1.444
##
$vectors
[,1] [,2]
[1,] 0.99966 -0.8413
[2,] 0.02593 0.5406

14

class(eigen(factory))

[1] "list"

=== With complicated objects, you can access parts of parts (of parts. . .)

factory %*% eigen(factory)$vectors[,2]

[,1]
labor -1.2147
steel 0.7805

eigen(factory)$values[2] * eigen(factory)$vectors[,2]

[1] -1.2147 0.7805

eigen(factory)$values[2]

[1] 1.444

eigen(factory)[[1]][[2]] # NOT [[1,2]]

[1] 1.444

Summary

• Arrays add multi-dimensional structure to vectors
• Matrices act like you’d hope they would
• Lists let us combine different types of data
• Dataframes are hybrids of matrices and lists, for classic tabular data
• Recursion lets us build complicated data structures out of the simpler ones

15

	Agenda
	Vector structures, starting with arrays
	Accessing and operating on arrays
	Functions on arrays
	Example: Price of houses in PA
	Use variables and names
	Running example: resource allocation (``mathematical programming'')
	Matrices
	Matrix multiplication
	Multiplying matrices and vectors
	Matrix operators
	The diagonal
	Creating a diagonal or identity matrix
	Inverting a matrix
	Why's it called ``solve''" anyway?
	Names in matrices
	Doing the same thing to each row or column
	Lists
	Accessing pieces of lists
	Expanding and contracting lists
	Naming list elements
	Names in lists (cont'd.)
	Key-Value pairs
	Dataframes
	Adding rows and columns
	Structures of Structures
	Structures of Structures (cont'd.)
	Example: Eigenstuff
	Summary

