
Data Frames and Control
36-350

3 September 2014

Agenda

• Making and working with data frames
• Conditionals: switching between different calculations
• Iteration: Doing something over and over
• Vectorizing: Avoiding explicit iteration

In Our Last Thrilling Episode

• Vectors: series of values all of the same type
v[5], ‘v[“name”]

• Arrays: multi-dimensional generalization of vectors a[5,6,2], a[,6,], a[rowname, colname,
layername]

• Matrices: special 2D arrays with matrix math
m[5,6], m[,6], m[,colname]

• Lists: series of values of mixed types
l[[3]], l$name

• Dataframes: hybrid of matrix and list

Dataframes, Encore

• 2D tables of data
• Each case/unit is a row
• Each variable is a column
• Variables can be of any type (numbers, text, Booleans, . . .)
• Both rows and columns can get names

Creating an example dataframe

library(datasets)
states <- data.frame(state.x77, abb=state.abb, region=state.region, division=state.division)

data.frame() is combining here a pre-existing matrix (state.x77), a vector of characters (state.abb), and
two vectors of qualitative categorical variables (factors; state.region, state.division)

Column names are preserved or guessed if not explicitly set

===

1

colnames(states)

[1] "Population" "Income" "Illiteracy" "Life.Exp" "Murder"
[6] "HS.Grad" "Frost" "Area" "abb" "region"
[11] "division"

states[1,]

Population Income Illiteracy Life.Exp Murder HS.Grad Frost Area
Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
abb region division
Alabama AL South East South Central

Dataframe access

• By row and column index

states[49,3]

[1] 0.7

• By row and column names

states["Wisconsin","Illiteracy"]

[1] 0.7

Dataframe access (cont’d)

• All of a row:

states["Wisconsin",]

Population Income Illiteracy Life.Exp Murder HS.Grad Frost Area
Wisconsin 4589 4468 0.7 72.48 3 54.5 149 54464
abb region division
Wisconsin WI North Central East North Central

Exercise: what class is states["Wisconsin",]?

Dataframe access (cont’d.)

• All of a column:

2

head(states[,3])

[1] 2.1 1.5 1.8 1.9 1.1 0.7

head(states[,"Illiteracy"])

[1] 2.1 1.5 1.8 1.9 1.1 0.7

head(states$Illiteracy)

[1] 2.1 1.5 1.8 1.9 1.1 0.7

Dataframe access (cont’d.)

• Rows matching a condition:

states[states$division=="New England", "Illiteracy"]

[1] 1.1 0.7 1.1 0.7 1.3 0.6

states[states$region=="South", "Illiteracy"]

[1] 2.1 1.9 0.9 1.3 2.0 1.6 2.8 0.9 2.4 1.8 1.1 2.3 1.7 2.2 1.4 1.4

Replacing values

Parts or all of the dataframe can be assigned to:

summary(states$HS.Grad)

Min. 1st Qu. Median Mean 3rd Qu. Max.
37.8 48.0 53.2 53.1 59.2 67.3

states$HS.Grad <- states$HS.Grad/100
summary(states$HS.Grad)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.378 0.480 0.532 0.531 0.592 0.673

states$HS.Grad <- 100*states$HS.Grad

with()

What percentage of literate adults graduated HS?

3

head(100*(states$HS.Grad/(100-states$Illiteracy)))

[1] 42.19 67.72 59.16 40.67 63.30 64.35

with() takes a data frame and evaluates an expression “inside” it:

with(states, head(100*(HS.Grad/(100-Illiteracy))))

[1] 42.19 67.72 59.16 40.67 63.30 64.35

Data arguments

Lots of functions take data arguments, and look variables up in that data frame:

plot(Illiteracy~Frost, data=states)

0 50 100 150

0.
5

1.
0

1.
5

2.
0

2.
5

Frost

Ill
ite

ra
cy

R2 = 0.45, p ≈ 10−7

Conditionals

Have the computer decide what to do next - Mathematically:

|x| =
{

x if x ≥ 0
−x if x < 0 , ψ(x) =

{
x2 if |x| ≤ 1

2|x| − 1 if |x| > 1

Exercise: plot ψ in R - Computationally:

if the country code is not "US", multiply prices by current exchange rate

4

if()

Simplest conditional:

if (x >= 0) {
x

} else {
-x

}

Condition in if needs to give one TRUE or FALSE value

else clause is optional

one-line actions don’t need braces

if (x >= 0) x else -x

Nested if()

if can nest arbitrarily deeply:

if (x^2 < 1) {
x^2

} else {
if (x >= 0) {

2*x-1
} else {

-2*x-1
}

}

Can get ugly though

Combining Booleans: && and ||

& work | like + or *: combine terms element-wise

Flow control wants one Boolean value, and to skip calculating what’s not needed

&& and || give one Boolean, lazily:

(0 > 0) && (all.equal(42%%6, 169%%13))

[1] FALSE

This never evaluates the complex expression on the right

Use && and || for control, & and | for subsetting

5

Iteration

Repeat similar actions multiple times:

table.of.logarithms <- vector(length=7,mode="numeric")
table.of.logarithms

[1] 0 0 0 0 0 0 0

for (i in 1:length(table.of.logarithms)) {
table.of.logarithms[i] <- log(i)

}
table.of.logarithms

[1] 0.0000 0.6931 1.0986 1.3863 1.6094 1.7918 1.9459

for()

for (i in 1:length(table.of.logarithms)) {
table.of.logarithms[i] <- log(i)

}

for increments a counter (here i) along a vector (here 1:length(table.of.logarithms)) and loops
through the **body* until it runs through the vector

“iterates over the vector”

N.B., there is a better way to do this job!

The body of the for() loop

Can contain just about anything, including: - if() clauses - other for() loops (nested iteration)

Nested iteration example

c <- matrix(0, nrow=nrow(a), ncol=ncol(b))
if (ncol(a) == nrow(b)) {

for (i in 1:nrow(c)) {
for (j in 1:ncol(c)) {

for (k in 1:ncol(a)) {
c[i,j] <- c[i,j] + a[i,k]*b[k,j]

}
}

}
} else {

stop("matrices a and b non-conformable")
}

6

while(): conditional iteration

Babylonian method for finding square root of x:

while (abs(x - r^2) > 1e-06) {
r <- (r + x/r)/2

}

Condition in the argument to while must be a single Boolean value (like if)

Body is looped over until the condition is FALSE so can loop forever

Loop never begins unless the condition starts TRUE

for() vs. while()

for() is better when the number of times to repeat (values to iterate over) is clear in advance

while() is better when you can recognize when to stop once you’re there, even if you can’t guess it to begin
with

Every for() could be replaced with a while()
Exercise: show this

Avoiding iteration

R has many ways of avoiding iteration, by acting on whole objects - It’s conceptually clearer - It leads to
simpler code - It’s faster (sometimes a little, sometimes drastically)

Vectorized arithmetic

How many languages add 2 vectors:

c <- vector(length(a))
for (i in 1:length(a)) { c[i] <- a[i] + b[i] }

How R adds 2 vectors:

a+b

or a triple for() loop for matrix multiplication vs. a %*% b

Advantages of vectorizing

• Clarity: the syntax is about what we’re doing
• Concision: we write less
• Abstraction: the syntax hides how the computer does it
• Generality: same syntax works for numbers, vectors, arrays, . . . - Speed: modifying big vectors over

and over is slow in R; work gets done by optimized low-level code

7

Vectorized calculations

Many functions are set up to vectorize automatically

abs(-3:3)

[1] 3 2 1 0 1 2 3

log(1:7)

[1] 0.0000 0.6931 1.0986 1.3863 1.6094 1.7918 1.9459

See also apply() from last week
We’ll come back to this in great detail later

Vectorized conditions: ifelse()

ifelse(x^2 > 1, 2*abs(x)-1, x^2)

1st argument is a Boolean vector, then pick from the 2nd or 3rd vector arguments as TRUE or FALSE

Summary

• Dataframes
• if, nested if, switch
• Iteration: for, while
• Avoiding iteration with whole-object (“vectorized”) operations

What Is Truth?

0 counts as FALSE; other numeric values count as TRUE; the strings “TRUE” and “FALSE” count as you’d
hope; most everything else gives an error
Advice: Don’t play games here; try to make sure control expressions are getting Boolean values
Conversely, in arithmetic, FALSE is 0 and TRUE is 1

mean(states$Murder > 7)

[1] 0.48

switch()

Simplify nested if with switch(): give a variable to select on, then a value for each option

switch(type.of.summary,
mean=mean(states$Murder),
median=median(states$Murder),
histogram=hist(states$Murder),
"I don't understand")

8

Exercise (off-line)

Set type.of.summary to, succesively, “mean”, “median”, “histogram”, and “mode”, and explain what happens

Unconditional iteration

repeat {
print("Help! I am Dr. Morris Culpepper, trapped in an endless loop!")

}

“Manual” control over iteration

repeat {
if (watched) { next() }
print("Help! I am Dr. Morris Culpepper, trapped in an endless loop!")
if (rescued) { break() }

}

break() exits the loop; next() skips the rest of the body and goes back into the loop

both work with for() and while() as well

Exercise: how would you replace while() with repeat()?

Babylonian Method of Root Finding

(Often attributed to Heron of Alexandria, about 2000 yrs later)

Given: x, find
√
x

Take a first guess r; either r2 > x, r2 < x or r2 = x

If r2 = x, stop

If r2 > x, then r >
√
x, but x/r < x/

√
x =
√
x

If r2 < x, then x/r >
√
x

∴ Replace r with average of r and x/r, and try again

9

	Agenda
	In Our Last Thrilling Episode
	Dataframes, Encore
	Creating an example dataframe
	Dataframe access
	Dataframe access (cont'd)
	Dataframe access (cont'd.)
	Dataframe access (cont'd.)
	Replacing values
	with()
	Data arguments
	Conditionals
	if()
	Nested if()
	Combining Booleans: && and ||
	Iteration
	for()
	The body of the for() loop
	Nested iteration example
	while(): conditional iteration
	for() vs. while()
	Avoiding iteration
	Vectorized arithmetic
	Advantages of vectorizing
	Vectorized calculations
	Vectorized conditions: ifelse()
	Summary
	What Is Truth?
	switch()
	Exercise (off-line)
	Unconditional iteration
	``Manual'' control over iteration
	Babylonian Method of Root Finding

