
Lecture 7: More on Functions
36-350

17 September 2014

How We Extend Functions

• Multiple functions: Doing different things to the same object
• Sub-functions: Breaking up big jobs into small ones
• Example: Back to resource allocation

Reading for Friday: 1.3, 7.3–7.5, 7.11, 7.13 of Matloff (skipping “extended examples”)

In our last episode . . .

Functions tie together related commands:

my.clever.function <- function(an.argument,another.argument) {
many lines of clever calculations
return(important.result)

}

Inputs/arguments and outputs/return values define the interface

A user only cares about turning inputs into outputs correctly

Why You Have to Write More Than One Function

Meta-problems:

• You’ve got more than one problem
• Your problem is too hard to solve in one step
• You keep solving the same problems

Meta-solutions:

• Write multiple functions, which rely on each other
• Split your problem, and write functions for the pieces
• Solve the recurring problems once, and re-use the solutions

Writing Multiple Related Functions

Statisticians want to do lots of things with their models: estimate, predict, visualize, test, compare, simulate,
uncertainty, . . .

Write multiple functions to do these things

Make the model one object; assume it has certain components

1

Consistent Interfaces

• Functions for the same kind of object should use the same arguments, and presume the same structure
• Functions for the same kind of task should use the same arguments, and return the same sort of value

(to the extent possible)

Keep related things together

• Put all the related functions in a single file
• Source them together
• Use comments to note dependencies

Power-Law Scaling for Urban Economies (cont’d.)

Remember the model:

Y = y0Na + noise

(output per person) =

(baseline)(population)scaling exponent + noise

Estimated parameters a, y0 by minimizing the mean squared error

Exercise: Modify the estimation code from last time so it returns a list, with components a and y0

Example: Predicting from a Fitted Model

Predict values from the power-law model:

Predict response values from a power-law scaling model
Inputs: fitted power-law model (object), vector of values at which to make

predictions at (newdata)
Outputs: vector of predicted response values
predict.plm <- function(object, newdata) {

Check that object has the right components
stopifnot("a" %in% names(object), "y0" %in% names(object))
a <- object$a
y0 <- object$y0
Sanity check the inputs
stopifnot(is.numeric(a),length(a)==1)
stopifnot(is.numeric(y0),length(y0)==1)
stopifnot(is.numeric(newdata))
return(y0*newdata^a) # Actual calculation and return

}

2

Example: Predicting from a Fitted Model

Plot fitted curve from power law model over specified range
Inputs: list containing parameters (plm), start and end of range (from, to)
Outputs: TRUE, silently, if successful
Side-effect: Makes the plot
plot.plm.1 <- function(plm,from,to) {

Take sanity-checking of parameters as read
y0 <- plm$y0 # Extract parameters
a <- plm$a
f <- function(x) { return(y0*x^a) }
curve(f(x),from=from,to=to)
Return with no visible value on the terminal
invisible(TRUE)

}

Example: Predicting from a Fitted Model

When one function calls another, use ... as a meta-argument, to pass along unspecified inputs to the called
function:

plot.plm.2 <- function(plm,...) {
y0 <- plm$y0
a <- plm$a
f <- function(x) { return(y0*x^a) }
from and to are possible arguments to curve()
curve(f(x), ...)
invisible(TRUE)

}

Sub-Functions

Solve big problems by dividing them into a few sub-problems

• Easier to understand: get the big picture at a glance
• Easier to fix, improve and modify: tinker with sub-problems at leisure
• Easier to design: for future lecture
• Easier to re-use solutions to recurring sub-problems

Rule of thumb: A function longer than a page is probably too long

Sub-Functions or Separate Functions?

Defining a function inside another function

• Pros: Simpler code, access to local variables, doesn’t clutter workspace
• Cons: Gets re-declared each time, can’t access in global environment (or in other functions)
• Alternative: Declare the function in the same file, source them together

Rule of thumb: If you find yourself writing the same code in multiple places, make it a separate function

3

Example: Plotting a Power-Law Model

Our old plotting function calculated the fitted values

But so does our prediction function

plot.plm.3 <- function(plm,from,to,n=101,...) {
x <- seq(from=from,to=to,length.out=n)
y <- predict.plm(object=plm,newdata=x)
plot(x,y,...)
invisible(TRUE)

}

Recursion

Reduce the problem to an easier one of the same form:

my.factorial <- function(n) {
if (n == 1) {

return(1)
} else {

return(n*my.factorial(n-1))
}

}

Recursion

or multiple calls:

fib <- function(n) {
if ((n==1) || (n==0)) {
return(1)

} else {
return (fib(n-1) + fib(n-2))

}
}

Exercise: Convince yourself that any loop can be replaced by recursion; can you always replace recursion
with a loop?

Cleaner Resource Allocation

planner <- function(output,factory,available,slack,tweak=0.1) {
needed <- plan.needs(output,factory)
if (all(needed <= available) && all(available-needed <= slack)) {

return(list(output=output,needed=needed))
}
else {

4

output <- adjust.plan(output,needed,available,tweak)
return(planner(output,factory,available,slack))

}
}

plan.needs <- function(output,factory) { factory %*% output }

adjust.plan <- function(output,needed,available,tweak) {
if (all(needed >= available)) { return(output*(1-tweak)) }
if (all(needed < available)) { return((1+tweak)) }
return(output*runif(n=length(output),min=1-tweak,max=1+tweak))

}

Summary

• Multiple functions let us do multiple related jobs, either on the same object or on similar ones
• Sub-functions let us break big problems into smaller ones, and re-use the solutions to the smaller ones
• Recursion is a powerful way of making hard problems simpler

Next time: Designing functions from the top down

5

	How We Extend Functions
	In our last episode …
	Why You Have to Write More Than One Function
	Writing Multiple Related Functions
	Consistent Interfaces
	Keep related things together
	Power-Law Scaling for Urban Economies (cont'd.)
	Example: Predicting from a Fitted Model
	Example: Predicting from a Fitted Model
	Example: Predicting from a Fitted Model
	Sub-Functions
	Sub-Functions or Separate Functions?
	Example: Plotting a Power-Law Model
	Recursion
	Recursion
	Cleaner Resource Allocation
	Summary

