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In Previous Episodes

I Seen functions to load data in passing
I Learned about string manipulation and regexp



Agenda

I Getting data into and out of the system when it’s already in R
format

I Import and export when the data is already very structured and
machine-readable

I Dealing with less structured data
I Web scraping



Reading Data from R

I You can load and save R objects
I R has its own format for this, which is shared across operating

systems
I It’s an open, documented format if you really want to pry into it

I save(thing, file="name") saves thing in a file called
name (conventional extension: rda or Rda)

I load("name") loads the object or objects stored in the file
called name, with their old names



gmp <- read.table("http://www.stat.cmu.edu/~cshalizi/statcomp/14/lectures/06/gmp.dat")
gmp$pop <- round(gmp$gmp/gmp$pcgmp)
save(gmp,file="gmp.Rda")
rm(gmp)
exists("gmp")

## [1] FALSE

not_gmp <- load(file="gmp.Rda")
colnames(gmp)

## [1] "MSA" "gmp" "pcgmp" "pop"

not_gmp

## [1] "gmp"



I We can load or save more than one object at once; this is how
RStudio will load your whole workspace when you’re starting,
and offer to save it when you’re done

I Many packages come with saved data objects; there’s the
convenience function data() to load them

data(cats,package="MASS")
summary(cats)

## Sex Bwt Hwt
## F:47 Min. :2.00 Min. : 6.30
## M:97 1st Qu.:2.30 1st Qu.: 8.95
## Median :2.70 Median :10.10
## Mean :2.72 Mean :10.63
## 3rd Qu.:3.02 3rd Qu.:12.12
## Max. :3.90 Max. :20.50

Note: data() returns the name of the loaded data file!



Non-R Data Tables

I Tables full of data, just not in the R file format
I Main function: read.table()

I Presumes space-separated fields, one line per row
I Main argument is the file name or URL
I Returns a dataframe
I Lots of options for things like field separator, column names,

forcing or guessing column types, skipping lines at the start of
the file. . .

I read.csv() is a short-cut to set the options for reading
comma-separated value (CSV) files

I Spreadsheets will usually read and write CSV



Writing Dataframes

I Counterpart functions write.table(), write.csv() write a
dataframe into a file

I Drawback: takes a lot more disk space than what you get from
load or save

I Advantage: can communicate with other programs, or even
edit manually



Less Friendly Data Formats

I The foreign package on CRAN has tools for reading data
files from lots of non-R statistical software

I Spreadsheets are special



Spreadsheets Considered Harmful

I Spreadsheets look like they should be dataframes
I Real spreadsheets are full of ugly irregularities

I Values or formulas?
I Headers, footers, side-comments, notes
I Columns change meaning half-way down
I Whole separate programming languages apparently intended to

mostly to spread malware

I Ought-to-be-notorious source of errors in both industry (1, 2)
and science (e.g., Reinhart and Rogoff)

http://ftalphaville.ft.com/2013/01/17/1342082/a-tempest-in-a-spreadsheet/
http://baselinescenario.com/2013/02/09/the-importance-of-excel/


Spreadsheets, If You Have To

I Save the spreadsheet as a CSV; read.csv()
I Save the spreadsheet as a CSV; edit in a text editor;

read.csv()
I Use read.xls() from the gdata package
I Tries very hard to work like read.csv(), can take a URL or

filename
I Can skip down to the first line that matches some pattern,

select different sheets, etc.
I You may still need to do a lot of tidying up after



require(gdata, quietly=TRUE)

## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
##
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
##
## Attaching package: 'gdata'
##
## The following object is masked from 'package:stats':
##
## nobs
##
## The following object is masked from 'package:utils':
##
## object.size



setwd("~/Downloads/")
gmp_2008_2013 <- read.xls("gdp_metro0914.xls",pattern="U.S.")
head(gmp_2008_2013)

## U.S..metropolitan.areas X13.269.057 X12.994.636 X13.461.662
## 1 Abilene, TX 5,725 5,239 5,429
## 2 Akron, OH 28,663 27,761 28,616
## 3 Albany, GA 4,795 4,957 4,928
## 4 Albany, OR 3,235 3,064 3,050
## 5 Albany-Schenectady-Troy, NY 40,365 42,454 42,969
## 6 Albuquerque, NM 37,359 38,110 38,801
## X13.953.082 X14.606.938 X15.079.920 .......
## 1 5,761 6,143 6,452 252
## 2 29,425 31,012 31,485 80
## 3 4,938 5,122 5,307 290
## 4 3,170 3,294 3,375 363
## 5 43,663 45,330 46,537 58
## 6 39,967 41,301 41,970 64



Semi-Structured Files, Odd Formats

I Files with metadata (e.g., earthquake catalog)
I Non-tabular arrangement
I Generally, write function to read in one (or a few) lines and

split it into some nicer format
I Generally involves a lot of regexps
I Functions are easier to get right than code blocks in loops



In Praise of Capture Groups

I Parentheses don’t just group for quantifiers; they also create
capture groups, which the regexp engine remembers

I Can be referred to later (\1, \2, etc.)
I Can also be used to simplify getting stuff out
I Examples in the handout on regexps, but let’s reinforce the

point



Scraping the Rich

I Remember that the lines giving net worth looked like

<td class="worth">$72 B</td>

or

<td class="worth">$5,3 B</td>



One regexp which catches this:

richhtml <- readLines("http://www.stat.cmu.edu/~cshalizi/statcomp/14/labs/03/rich.html")
worth_pattern <- "\\$[0-9,]+ B"
worth_lines <- grep(worth_pattern, richhtml)
length(worth_lines)

## [1] 100

(that last to check we have the right number of matches)



Just using this gives us strings, including the markers we used to pin
down where the information was:

worth_matches <- regexpr(worth_pattern, richhtml)
worths <- regmatches(richhtml, worth_matches)
head(worths)

## [1] "$72 B" "$58,5 B" "$41 B" "$36 B" "$36 B" "$35,4 B"

Now we’d need to get rid of the anchoring $ and B; we could use
substr, but. . .



Adding a capture group doesn’t change what we match:

worth_capture <- worth_pattern <- "\\$([0-9,]+) B"
capture_lines <- grep(worth_capture, richhtml)
identical(worth_lines, capture_lines)

## [1] TRUE

but it does have an advantage



Using regexec

worth_matches <- regmatches(richhtml[capture_lines],
regexec(worth_capture, richhtml[capture_lines]))

worth_matches[1:2]

## [[1]]
## [1] "$72 B" "72"
##
## [[2]]
## [1] "$58,5 B" "58,5"

List with 1 element per matching line, giving the whole match and
then each paranethesized matching sub-expression



Functions make the remaining manipulation easier:

second_element <- function(x) { return(x[2]) }
worth_strings <- sapply(worth_matches, second_element)
comma_to_dot <- function(x) {

return(gsub(pattern=",",replacement=".",x))
}
worths <- as.numeric(sapply(worth_strings, comma_to_dot))
head(worths)

## [1] 72.0 58.5 41.0 36.0 36.0 35.4

Exercise: Write one function which takes a single line, gets the
capture group, and converts it to a number



Web Scraping

1. Take a webpage designed for humans to read
2. Have the computer extract the information we actually want
3. Iterate as appropriate

Take in unstructured pages, return rigidly formatted data





Being More Explicit in Step 2

I The information we want is somewhere in the page, possibly in
the HTML

I There are usually markers surrounding it, probably in the
HTML

I We now know how to pick apart HTML using regular
expressions



I Figure out exactly what we want from the page
I Understand how the information is organized on the page

I What does a human use to find it?
I Where do those cues appear in the HTML source?

I Write a function to automate information extraction
I Generally, this means regexps
I Parenthesized capture groups are helpful
I The function may need to iterate
I You may need more than one function

I Once you’ve got it working for one page, iterate over relevant
pages



Example: Book Networks

Famous example from Vladis Krebs

http://www.orgnet.com/divided1.html


I Two books are linked if they’re bought together at Amazon
I Amazon gives this information away (to try to drive sales)
I How would we replicate this?



[http://www.amazon.com/dp/0387747303/]

http://www.amazon.com/dp/0387747303/


I Do we want “frequently bought together”, or “customers who
bought this also bought that”? Or even “what else do
customers buy after viewing this”?

I Let’s say “customers who bought this also bought that”

I Now look carefully at the HTML
I There are over 14,000 lines in the HTML file for this page;

you’ll need a text editor
I Fortunately most of it’s irrelevant



<div class="shoveler" id="purchaseShvl">
<div class="shoveler-heading">

<h2>Customers Who Bought This Item Also Bought</h2>
</div>

<div class="shoveler-pagination" style="display:none">

<span>&nbsp;</span>
<span>
Page <span class="page-number"></span> of <span class="num-pages"></span>
<span class="start-over"><span class="a-text-separator"></span><a href="#" onclick="return false;" class="start-over-link">Start over</a></span>
</span>
</div>

<div class="shoveler-button-wrapper" id="purchaseButtonWrapper">
<a class="back-button" href="#Back" style="display:none" onclick="return false;"><span class="auiTestSprite s_shvlBack"><span>Back</span></span></a>
<div class="shoveler-content">

<ul tabindex="-1">



Here’s the first of the also-bought books:

<li>
<div class="new-faceout p13nimp" id="purchase_0387981403" data-asin="0387981403" data-ref="pd_sim_b_1">

<a href="/ggplot2-Elegant-Graphics-Data-Analysis/dp/0387981403/ref=pd_sim_b_1?ie=UTF8&refRID=1HZ0VDHEFFX3EM2WNWRH" class="sim-img-title" > <div class="product-image">
<img src="http://ecx.images-amazon.com/images/I/31I22xsT%2BXL._SL500_PIsitb-sticker-arrow-big,TopRight,35,-73_OU01_SS100_.jpg" width="100" alt="" height="100" border="0" />

</div>
<span title="ggplot2: Elegant Graphics for Data Analysis (Use R!)">ggplot2: Elegant Graphics for Data &#133;</span> </a>

<div class="byline">
<span class="carat">&#8250</span>

We could extract the ISBN from this, and then go on to the next
book, and so forth. . .



<div id="purchaseSimsData" class="sims-data"
style="display:none" data-baseAsin="0387747303"
data-deviceType="desktop" data-featureId="pd_sim" data-isAUI="1" data-pageId="0387747303" data-pageRequestId="1HZ0VDHEFFX3EM2WNWRH" data-reftag="pd_sim_b" data-vt="0387747303"
data-wdg="book_display_on_website"
data-widgetName="purchase">0387981403,0596809158,1593273843,1449316956,
0387938362,144931208X,0387790535,0387886974,0470973927,0387759689,
1439810184,1461413648,1461471370,1782162143,1441998896,1429224622,
1612903436,1441996494,1461468485,1617291560,1439831769,0321888030,1449319793,
1119962846,0521762936,1446200469,1449358659,1935182390,0123814855,1599941651,
0387759352,1461476178,0387773169,0387922970,0073523321,141297514X,1439840954,
1612900275,1449339735,052168689X,0387781706,1584884509,0387848576,1420068725,
1441915753,1466572841,1107422221,111844714X,0716762196,0133412938,1482203537,
0963488406,1466586966,0470463635,1493909827,1420079336,0321898656,1461422981,
158488424X,1441926127,1466570229,1590475348,1430266406,0071794565,0071623663,
111866146X,1441977864,1782160604,1449340377,1449309038,0963488414,0137444265,
1461406846,0073014664,1449370780,144197864X,3642201911,0534243126,1461443423,
158488651X,1449357105,1118208781,1420099604,1107057132,1449355730,1118356853,
1449361323,0470890819,0387245448,0521518148,0521169828,1584888490,1461464455,
0387781889,0387759581,0387717617,0123748569,188652923X,0155061399,0201076160</div>



In this case there’s a big block which gives us the ISBNs of all the
also-bought books

Strategy:

I Load the page as text
I Search for the regexp which begins this block, contains at least

one ISBN, and then ends
I Extract the sequence of ISBNs as a string, split on comma
I Record in a dataframe that Data Manipulation’s ISBN is also

bought with each of those ISBNs
I Snowball sampling: Go to the webpage of each of those books

and repeat
I Stop when we get tired. . .
I Or when Amazon gets annoyed with us



More considerations on web-scraping

I You should really look at the site’s robots.txt file and
respect it

I See [https://github.com/hadley/rvest] for a prototype of
a package to automate a lot of the work of scraping webpages

https://github.com/hadley/rvest


Summary

I Loading and saving R objects is very easy
I Reading and writing dataframes is pretty easy
I Extracting data from unstructured sources is about using

regexps appropriately
I Maybe not easy, but at least feasible


