
Lecture 11: Distributions as Models
36-350

1 October 2014

Previously

• R functions for regression models
• R functions for probability distributions

Agenda

• Distributions from data
• Review of R for theoretical distributions
• Fitting distributions to data
• Checking distributions against data

===

data("cats",package="MASS")

Cats may be too saccharine (unless we think about where cats$Hwt comes from)
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Let’s Grab some Data

The “pdfetch” package grabs economic and financial information from public-domain sources, e.g., Federal
Reserve or Yahoo Finance

require(pdfetch)

## Loading required package: pdfetch

# Corrections Corp. of America
CXW <- pdfetch_YAHOO("CXW",fields="adjclose",

from=as.Date("2000-01-01",
to=as.Date("2014-09-30")))

===

summary(CXW)

## Index CXW
## Min. :2000-01-03 Min. : 0.69
## 1st Qu.:2003-09-15 1st Qu.: 6.26
## Median :2007-05-23 Median :13.67
## Mean :2007-05-21 Mean :14.28
## 3rd Qu.:2011-01-27 3rd Qu.:19.47
## Max. :2014-10-06 Max. :36.12

plot(CXW)
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If the prison-industrial complex is too grim, refer back to the cats

Let’s Transform Some Data

The price pt doesn’t matter, what matters are the returns rt = log (pt/pt−1)

returns <- na.omit(as.vector(diff(log(CXW$CXW))))
summary(returns)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.4020 -0.0104 0.0000 0.0005 0.0108 0.4430

plot(returns,type="l")
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The Data’s Distribution

quantile(x,probs) calculates the quantiles at probs from x

quantile(returns,c(0.25,0.5,0.75))

## 25% 50% 75%
## -0.01044 0.00000 0.01079

Getting distributions from data (cont’d.)

ecdf() - e mpirical c umulative d istribution f unction; no assumptions but also no guess about distribution
between the observations

In math, ECDF is often written as F̂ or F̂n

plot(ecdf(returns), main="Empirical CDF of CXW returns")
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Conceptually, quantile and ecdf are inverses to each other

Getting Probability Densities from Data

hist(x) calculates a histogram from x - divide the data range up into equal-width bins and count how many
fall into each bin - Or divide bin counts by (total count)*(width of bin), and get an estimate of the probability
density function (pdf)
Produces plot as a default side-effect

===

hist(returns,n=101,probability=TRUE)

5



Histogram of returns

returns

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0
5

10
15

20
25

Getting probability densities from data (cont’d.)

density(x) estimates the density of x by counting how many observations fall in a little window around
each point, and then smoothing
“Bandwidth” ≈ width of window around each point
Technically, a “kernel density estimate”
Take 36-402 in the spring for much more

Remember: density() is an estimate of the pdf, not The Truth

density returns a collection of x, y values, suitable for plotting

===

plot(density(returns),main="Estimated pdf of CXW returns")
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===

hist(returns,n=101,probability=TRUE)
lines(density(returns),lty="dashed")
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Getting distributions from data (cont’d.)

table() - tabulate outcomes, most useful for discrete spaces; remember to normalize if you want probabilities

plot(table(cats$Sex)/nrow(cats),ylab="probability")
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Who Cares About the Distribution of the Data?

• Overly detailed: every single observation recorded as a separate tick

– Too much information

• The exact set of samples would never repeat if we re-ran things anyway

– That information is wrong

• Try to summarize what will generalize to other situations

– Use a model, remember the model’s parameters

R commands for distributions

• dfoo = the probability d ensity (if continuous) or probability mass function of foo (pdf or pmf)
• pfoo = the cumulative p robability function (CDF)
• qfoo = the q uantile function (inverse to CDF)
• rfoo = draw r andom numbers from foo (first argument always the number of draws)

?Distributions to see which distributions are built in

If you write your own, follow the conventions
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Examples

dnorm(x=c(-1,0,1),mean=1,sd=0.1)

## [1] 5.521e-87 7.695e-22 3.989e+00

pnorm(q=c(2,-2)) # defaults to mean=0,sd=1

## [1] 0.97725 0.02275

dbinom(5,size=7,p=0.7,log=TRUE)

## [1] -1.147

qchisq(p=0.95,df=5)

## [1] 11.07

rt(n=4,df=2)

## [1] -3.4438 -0.7827 -1.0216 -0.3335

Displaying Probability Distributions

curve is very useful for the d, p, q functions:

curve(dgamma(x,shape=45,scale=1.9),from=0,to=200)
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N.B.: the r functions aren’t things it makes much sense to plot
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How Do We Fit Distributional Models to the Data?

• Match moments (mean, variance, etc.)
• Match other summary statistics
• Maximize the likelihood

Method of Moments (MM), Closed Form

• Pick enough moments that they identify the parameters
– At least 1 moment per parameter; algebraically independent

• Write equations for the moments in terms of the parameters
e.g., for gamma

µ = as , σ2 = as2

• Do the algebra by hand to solve the equations

a = µ2/σ2 , s = σ2/µ

• Code up the formulas (did this in lab 3)

gamma.est_MM <- function(x) {
m <- mean(x); v <- var(x)
return(c(shape=m^2/v, scale=v/m))

}

MM, Numerically

• Write functions to get moments from parameters (usually algebra)
• Set up the difference between data and model as another function

gamma.mean <- function(shape,scale) { return(shape*scale) }
gamma.var <- function(shape,scale) { return(shape*scale^2) }
gamma.discrepancy <- function(shape,scale,x) {

return((mean(x)-gamma.mean(shape,scale))^2 + (var(x)-gamma.mean(shape,scale))^2)
}

• Minimize it

More Generally. . .

• Nothing magic about moments
• Match other data summaries, say the median

– Or even more complicated things, like ratios of quantiles

– You did this in lab
• If you can’t solve exactly for parameters from the summaries, set up a discrepancy function and minimize

it
– You are doing this in the HW

• The summaries just have to converge on population values
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Maximum Likeihood

• Usually we think of the parameters as fixed and consider the probability of different outcomes, f(x; θ)
with θ constant and x changing

• Likelihood of a parameter value = L(θ) = what probability does θ give to the data?
– For continuous variables, use probability density
– f(x; θ) but letting θ change while data constant
– Not the probability of θ, if that even makes sense

• Maximum likelihood = guess that the parameter is whatever makes the data most likely
• Most likely parameter value = maximum likelihood estimate = MLE

Likelihood in Code

• With independent data points x1, x2, xn, likelihood is

L(θ) =
n∏
i=1

f(xi; θ)

• Multiplying lots of small numbers is numerically bad; take the log:

`(θ) =
n∑
i=1

log f(xi; θ)

• In pseudo-code:

loglike.foo <- function(params, x) {
sum(dfoo(x=x,params,log=TRUE))

}

(will see how to do this for real later in class)

What Do We Do with the Likelihood?

• We maximize it!
• Sometimes we can do the maximization by hand with some calculus

– For Gaussian, MLE = just match the mean and variance
– For Pareto, MLE â = 1 + 1/log (x/xmin)

• Doing numerical optimization
– Stick in a minus sign if we’re using a minimization function

Why Use the MLE?

• Usually (but not always) consistent: converges on the truth as we get more data

• Usually (but not always) efficient: converges on the truth at least as fast as anything else

• There are some parameters where the maximum isn’t well-defined (e.g. xmin for a Pareto)

• Sometimes the data is too aggregated or mangled to use the MLE (as with the income data in lab 5)
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fitdistr

MLE for one-dimensional distributions can be done through fitdistr in the MASS package

It knows about most the standard distributions, but you can also give it arbitrary probability density functions
and it will try to maximize them
A starting value for the optimization is optional for some distributions, required for others (including
user-defined densities)

Returns the parameter estimates and standard errors
SEs come from large-n approximations so use cautiously

fitdistr examples

Fit the gamma distribution to the cats’ hearts:

require(MASS)

## Loading required package: MASS

fitdistr(cats$Hwt, densfun="gamma")

## shape rate
## 20.300 1.910
## ( 2.373) ( 0.226)

Returns: estimates above, standard errors below

fitdistr Examples (cont’d.)

Fit the Students-t distribution to the returns:

fitdistr(returns,"t")

## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
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## m s df
## 0.0001797 0.0126275 1.8792569
## (0.0002676) (0.0003036) (0.0783154)

Here parameters are location (m), scale (s) and degrees of freedom (very heavy tails)

fitdistr Examples (cont’d.)

User-defined density:

dpareto <- function(x,exponent,xmin,log=FALSE) {
f <- (exponent-1)/xmin * (x/xmin)^(-exponent)
f <- ifelse(x<xmin,NA,f)
if(!log) { return(f) } else (return(log(f)))

}
# Fit pareto to large absolute returns

# Parameters given outside the "start" list are fixed
fitdistr(abs(returns)[abs(returns)>0.05], densfun=dpareto,

start=list(exponent=2.5), xmin=0.05)

## Warning: one-dimensional optimization by Nelder-Mead is unreliable:
## use "Brent" or optimize() directly

## exponent
## 2.898
## (0.122)

Checking Your Estimator

• simulate, then estimate; estimates should converge as the sample grows

gamma.est_MM(rgamma(100,shape=19,scale=45))

## shape scale
## 22.89 36.51

gamma.est_MM(rgamma(1e5,shape=19,scale=45))

## shape scale
## 18.89 45.27

gamma.est_MM(rgamma(1e6,shape=19,scale=45))

## shape scale
## 19.01 44.99
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Checking the Fit

Use your eyes: Graphic overlays of theory vs. data

plot(density(cats$Hwt))
cats.gamma <- gamma.est_MM(cats$Hwt)
curve(dgamma(x,shape=cats.gamma["shape"],scale=cats.gamma["scale"]),add=TRUE,col="blue")
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Checking the Fit (cont’d.)

• Calculate summary statistics not used in fitting, compare them to the fitted model

# Really bad and good days for CXW shareholders, per model:
qnorm(c(0.01,0.99),mean=mean(returns),sd=sd(returns))

## [1] -0.07586 0.07691

# As it happened:
quantile(returns,c(0.01,0.99))

## 1% 99%
## -0.09372 0.09414
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Quantile-Quantile (QQ) Plots

• Plot theoretical vs. actual quantiles
• or plot quantiles of two samples against each other
• Ideally, a straight line when the distributions are the same
• qqnorm, qqline are specialized for checking normality

qqnorm(returns); qqline(returns)

−2 0 2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

QQ Plots (cont’d)

• ‘qqplot(x,y) will do a Q-Q plot of one vector against another

qqplot(returns,qt((1:500)/501,df=2))
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Calibration Plots

• If the distribution is right, 50% of the data should be below the median, 90% should be below the 90th
percentile, etc.

• Special case of calibration of probabilities: events with probability p% should happen about p% of
the time, not more and not less

• We can look at calibraton by calculating the (empirical) CDF of the (theoretical) CDF and plotting

– Ideal calibration plot is a straight line up the diagonal
– Systematic deviations are a warning sign

Making a Calibration Plot

plot(ecdf(pnorm(returns, mean=mean(returns), sd=sd(returns))),
main="Calibration of Gaussian distribution for returns")

abline(0,1,col="grey")
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Again,
way too many large changes (in either direction)

Calibration Plots (cont’d.)

CXW.t <- coefficients(fitdistr(returns,"t"))

## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced

plot(ecdf(pt((returns-CXW.t[1])/CXW.t[2], df=CXW.t[3])),
main="Calibration of t distribution for returns")

abline(0,1,col="grey")
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Calibration Plots (cont’d.)

plot(ecdf(pgamma(cats$Hwt, shape=cats.gamma["shape"], scale=cats.gamma["scale"])),
main="Calibration of gamma distribution for cats' hearts")

abline(0,1,col="grey")
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Calibration Plots (cont’d.)

Challenge: Write a general function for making a calibraton plot, taking a data vector, a cumulative probability
function, and a parameter vector

Kolmogorov-Smirnov Test

• How much should the QQ plot or calibration plot wiggle around the diagonal?
• Answer a different question. . .
• Biggest gap between theoretical and empirical CDF:

DKS = max
x

∣∣∣F (x)− F̂ (x)
∣∣∣

• Useful because DKS always has the same distribution if the theoretical CDF is fixed and correct, and
K+S calculated this back in the day

• Also works for comparing the empirical CDFs of two samples, to see if they came from the same
distribution

KS Test, Data vs. Theory

ks.test(returns,pnorm,mean=0,sd=0.0125)

## Warning: ties should not be present for the Kolmogorov-Smirnov test
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##
## One-sample Kolmogorov-Smirnov test
##
## data: returns
## D = 0.0849, p-value < 2.2e-16
## alternative hypothesis: two-sided

• More complicated (and not properly handled by built-in R) if parameters are estimated

– Estimating parameters makes the fit look better than it really is, so it doesn’t help save the model
when it gets really rejected (like this one is)

KS Test, Data vs. Theory (cont’d.)

Hack: Estimate using (say) 90% of the data, and then check the fit on the remaining 10%

train <- sample(1:length(returns),size=round(0.9*length(returns)))
CWX.t_train <- coefficients(fitdistr(returns[train],"t"))

## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced

returns.test_standardized <- (returns[-train]-CWX.t_train[1])/CWX.t_train[2]
ks.test(returns.test_standardized,pt,df=CWX.t_train[3])

## Warning: ties should not be present for the Kolmogorov-Smirnov test
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##
## One-sample Kolmogorov-Smirnov test
##
## data: returns.test_standardized
## D = 0.0566, p-value = 0.1861
## alternative hypothesis: two-sided

=== - Can also test whether two samples come from same distribution

n <- length(returns)
half <- round(n/2)
ks.test(returns[1:half], returns[(half+1):n])

## Warning: p-value will be approximate in the presence of ties

##
## Two-sample Kolmogorov-Smirnov test
##
## data: returns[1:half] and returns[(half + 1):n]
## D = 0.0598, p-value = 0.002618
## alternative hypothesis: two-sided

Chi-Squared Test for Discrete Distributions

Compare an actual table of counts to a hypothesized probability distribution
e.g., as many up days as down?

up_or_down <- ifelse(returns > 0, 1, -1)
# 1936 down days, 1772 up days
chisq.test(table(up_or_down),p=c(1/2,1/2))

##
## Chi-squared test for given probabilities
##
## data: table(up_or_down)
## X-squared = 7.423, df = 1, p-value = 0.006438

Chi-Squared Test: Degrees of Freedom

• The p-value calculated by chisq.test assumes that all the probabilities in p were fixed, not estimated
from the data used for testing, so df = number of cells in the table −1

• If we estimate q parameters, we need to subtract q degrees of freedom

Chi-Squared Test for Continuous Distributions

• Divide the range into bins and count the number of observations in each bin; this will be x in
chisq.test()

• Use the CDF function p foo to calculate the theoretical probability of each bin; this is p
• Plug in to chisq.test
• If parameters are estimated, adjust
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Chi-Squared for Continuous Data (cont’d.)

• hist() gives us break points and counts:

cats.hist <- hist(cats$Hwt,plot=FALSE)
cats.hist$breaks

## [1] 6 8 10 12 14 16 18 20 22

cats.hist$counts

## [1] 20 45 42 23 11 2 0 1

Chi-Squared for Continuous Data (cont’d.)

Use these for a χ2 test:

# Why the padding by -Inf and Inf?
p <- diff(pgamma(c(-Inf,cats.hist$breaks,Inf),shape=cats.gamma["shape"],

scale=cats.gamma["scale"]))
# Why the padding by 0 and 0?
x2 <- chisq.test(c(0,cats.hist$counts,0),p=p)$statistic

## Warning: Chi-squared approximation may be incorrect

# Why +2? Why -length(cats.gamma)?
pchisq(x2,df=length(cats.hist$counts)+2 - length(cats.gamma))

## X-squared
## 0.8546

Don’t need to run hist first; can also use cut to discretize (see ?cut)

Chi-Squared for Continuous Data (cont’d.)

• This is all a bit old-school

– Loss of information from discretization
– Lots of work just to use χ2

• Try e.g. ks.test with an independent test set
• Or try a “smooth test” (take 36-402)

Misc. Tests for Misc. Distributions

• Too many to list
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More Advanced and Formal Tests

• “bootstrap” testing (36-402)
• “smooth tests of goodness of fit” (also 36-402)

Summary

• Visualizing and computing empirical distribution
• Parametric distributions are models
• Methods of fitting: moments, generalized moments, likelihood
• Methods of checking: visual comparisons, other statistics, tests, calibration

Aside: Some Math for MM and GMM

• Parameter θ is a p-dimensional vector, true value = θ∗

• Introduce q ≥ p functionals g1, . . . gq, which we can calculate either from the parameter θ or from the
data x1:n

• Assume that for reach i, gi(x1:n)→ gi(θ∗)
• Define

θ̂GMM = argminθ
q∑
i=1

(gi(θ)− gi(x1:n))2

Math for MM and GMM (cont’d.)

• Shouldn’t be hard to believe that θ̂GMM → θ∗

• But why give equal attention to every functional?

– More weight on the more-precisely-measured functionals
– More weight on the more-sensitive-to-θ functionals
– Less weight on partially-redundant functionals

• Abbreviate g(θ) for (g1(θ), . . . gq(θ)), and likewise g(x1:n), so

θ̂GMM = argminθ(g(θ)− g(x1:n))T (g(θ)− g(x1:n))

• Generalize by introducing any positive-definite matrix Ω:

θ̂GMM = argminθ(g(θ)− g(x1:n))TΩ(g(θ)− g(x1:n))

Math for MM and GMM (cont’d.)

• Optimal Ω turns out to be the variance matrix of g(θ∗)
• Iterative approximation: start with no weighting, estimate that variance matrix, re-do the estimate

with weights, etc.
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Aside: Some Math for the MLE

• More convenient to work with the mean log likelihood:

Λ(θ) = 1
n

n∑
i=1

log f(Xi; θ)

• This is a sample average so the law of large numbers applies:

Λ(θ)→ E[Λ(θ)] = λ(θ)

• The true parameter has higher average log-likelihood than anything else: if θ 6= θ∗

θ 6= θ∗ ⇒ λ(θ) < λ(θ∗)

• Some extra conditions are needed for
θ̂MLE → θ∗
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