
Lecture 12: Transforming and Reshaping Data
36-350

6 October 2014

In Previous Episodes

• Accessing vectors, arrays, and data frames
• Applying a function across a vector, array, or data frame
• Extracting data values from more-or-less formatted text
• Functions to automate repetitive tasks

Agenda

• Review of selective access
• Review of applying functions
• Lossless vs. lossy transformations
• Common transformations of numerical data
• Re-ordering data frames
• Merging data frames

Not Our Only Example, Really

data("cats",package="MASS")

Access Tricks

Problem: get the positions in a vector / columns in a matrix / rows in a dataframe matching some condition

• Vector of Boolean indicators

head(cats$Hwt[cats$Sex=="M"])

[1] 6.5 6.5 10.1 7.2 7.6 7.9

head(cats[cats$Sex=="M","Hwt"])

[1] 6.5 6.5 10.1 7.2 7.6 7.9

• N.B., cats$Sex=="M" is a Boolean vector, as long as cats$Sex

1

Access Tricks (cont’d.)

• Vector of index numbers

training_rows <- sample(1:nrow(cats),size=nrow(cats)/2)
head(training_rows)

[1] 79 62 133 70 16 82

cats.trained <- cats[training_rows,]
head(cats.trained)

Sex Bwt Hwt
79 M 2.7 8.0
62 M 2.4 7.9
133 M 3.5 15.6
70 M 2.5 11.0
16 F 2.2 9.7
82 M 2.7 9.6

Access Tricks (cont’d.)

• Vectors of Booleans and vectors of indices can be stored and re-used

males <- cats$Sex=="M"

• See also apply tricks below

Access Tricks: Don’t Do These

• Non-binary, non-integer vectors do not make good indices; don’t say

movies$gross[movies$genre]

if you are trying to get all the gross revenues of some movies of a certain genre

• Loops are a last resort, not a first; don’t say

for (i in 1:nrow(movies)) {
if (movies$genre[i]=="comedy") {
gross.comedy <- c(gross.comedy, movies$gross[i])
}

}

Access Tricks: Don’t Do These (cont’d.)

• In either case, say

2

movies$gross[movies$genre=="comedy"]

or

movies[movies$genre=="comedy","gross"]

Apply Tricks

• Lots of functions will automatically apply themselves to each element in a vector or dataframe; they
are vectorized

dim(is.na(cats)) # checks each element for being NA

[1] 144 3

• Math functions are vectorized

mean(log(cats$Hwt))

[1] 2.339

Apply Tricks (cont’d.)

• Distribution-related functions are vectorized

rnorm(n=5,mean=-2:2,sd=(1:5)/5)

[1] -1.81837 -0.82949 0.04215 0.45532 1.35941

• Lots of the text functions vectorize across target strings, not patterns (e.g., grep, regexp)
• If the function doesn’t, or that’s not quite what you want, turn to the apply family of functions

Apply Tricks: Vectors

• Apply the same function to every element in a vector: sapply or lapply

mean.omitting.one <- function(i,x) {mean(x[-i])}
jackknifed.means <- sapply(1:nrow(cats),mean.omitting.one,x=cats$Bwt)
length(jackknifed.means)

[1] 144

3

sd(jackknifed.means)

[1] 0.003394

• sapply tries to return a vector or an array (with one column per entry in the original vector)
• If that doesn’t make sense, use lapply, which just returns a list

Apply Tricks: Rows

• Apply the same function FUN to every row of an array or dataframe X: apply(X,1,FUN)

rows_with_NAs <- apply(is.na(movies),1,any)

• apply tries to return a vector or an array; will return a list if it can’t
• apply assumes FUN will work on a row of X; might need to write a little adapter function to make that

true

Make 3rd and 5th cols. of X the 1st and 2nd args. of f
apply(X,1,function(z){f(z[3],z[5])})

Apply Tricks: Columns

• Apply the same function FUN to every column of an array or dataframe X apply(X,2,FUN)

apply(cats[,2:3],2,median)

Bwt Hwt
2.7 10.1

• Same notes as applying across rows

Apply Tricks: Multiple Vectors or Columns

• Given: function f which takes 2+ arguments; vectors x, y, . . . z
• Wanted; f(x[1],y[1],..., z[1]), f(x[2],y[2],...,z[2]), etc.
• Solution:

mapply(FUN=f,x,y,z)

• Will recycle the vectors to the length of the longest if needed
• Often very useful when the vectors are columns, not necessarily from the same object

4

Transformations

You go to analysis with the data you have, not the data you want.

The variables in the data are often either not what’s most relevant to the analysis, or they’re not arranged
conveniently, or both
Satisfying model assumptions is a big issue here

∴ often want to transform the data to make it closer to the data we wish we had to start with

Lossless transformations: the original data could be recovered exactly
(at least in principle; function is invertible; same σ-algebra)

Lossy transformations irreversibly destroy some information
(function is not invertible; new σ-algebra is coarser)

Lossless vs. Lossy

Many common transformations are lossless

Many useful transformations are lossy, sometimes very lossy

Because you’re documenting your transformations in commented code
yes?
and kept a safe copy of the original data on the disk
yes?
and your disk is backed up regularly
YES?!?
you can use even very lossy transformations without fear

Some Common Transformations of Numerical Data

• log: Because Y = f(X)g(Z)⇔ log Y = log f(X) + log g(X), taking logs lets us use linear or additive
models when the real relationship is multiplicative

– How would you take the log of a whole column?

Numerical Transformations (cont’d.)

• Z-scores, centering and scaling:

head(scale(cats[,-1],center=TRUE,scale=TRUE))

Bwt Hwt
1 -1.491 -1.4912
2 -1.491 -1.3269
3 -1.491 -0.4644
4 -1.285 -1.4091
5 -1.285 -1.3680
6 -1.285 -1.2448

5

• center=TRUE ⇒ subtract the mean; alternately, FALSE or a vector
• scale=TRUE ⇒ divide by standard deviation, after centering; same options

– Defaults in scale produce “Z-scores”

Numerical Transformations (cont’d.)

• Successive differences: diff(x); differences between x[t] and x[t-k], diff(x,lag=k)
– Vectorizes over columns of a matrix

• Cumulative totals etc.: cumsum, cumprod, cummax, cummin
– Exercise: write cummean

• Rolling means: rollmean from the zoo package; see Recipe 14.10 in The R Cookbook
– See also Recipe 14.12 on rollapply

Numerical Transformations (cont’d.)

• Magnitudes to ranks: rank(x) outputs the rank of each element of x within the vector, 1 being the
smallest:

head(cats$Hwt)

[1] 7.0 7.4 9.5 7.2 7.3 7.6

head(rank(cats$Hwt))

[1] 4.0 11.0 50.5 6.5 9.0 12.5

Numerical Transformations (cont’d.)

• “Para-normal” values: Based on the percentile, where would this be if it were Gaussian/normal?

qnorm(ecdf(x)(x),mean=100,sd=15)

• Obviously nothing magic about using qnorm there
• This is how IQ tests are scored; raw scores are highly skewed and don’t follow bell curves at all
• “Gaussian copula” = run this trick on two or more variables and then measure the correlations

name due to L. Wasserman

Numerical Transformations (cont’d.)

• Extracting deviations from a trend
– Calculate the predicted value per trend
– Take the difference

6

gdp_trend <- gdp[1]*exp(growth.rate*(0:length(gdp)-1))
gdp_vs_trend <- gdp/gdp_rend

• Use residuals when the trend is a regression model:

head(residuals(lm(Hwt ~ Bwt, data=cats)))

1 2 3 4 5 6
-0.7115 -0.3115 1.7885 -0.9149 -0.8149 -0.5149

Summarizing Subsets

• aggregate takes a dataframe, a list containing the variable(s) to group the rows by, and a scalar
-valued summarizing function:

aggregate(cats[,-1],by=cats[1],mean)

Sex Bwt Hwt
1 F 2.36 9.202
2 M 2.90 11.323

Note: No comma in cats[1]; treating dataframe as a list of vectors - Each vector in the by list must be as
long as the number of rows of the data

Summarizing Subsets (cont’d.)

• aggregate doesn’t work on vectors, but it has a cousin, tapply:

tapply(cats$Hwt,INDEX=cats$Sex,max)

F M
13.0 20.5

• tapply can return more than just a scalar value:

tapply(cats$Hwt,cats$Sex,summary)

$F
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.30 8.35 9.10 9.20 10.10 13.00
##
$M
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.5 9.4 11.4 11.3 12.8 20.5

7

Summarizing Subsets (cont’d.)

More complicated actions on subsets usually need the split/apply pattern, which we’ll get to in a few weeks

Re-Organizing

• Even if the numbers (or strings, etc.) are fine, they may not be arranged very conveniently
• Lots of data manipulation involves re-arrangement:

– sorting arrays and dataframes by certain columns
– exchanging rows and columns
– merging dataframes
– Turning short, wide dataframes into long, narrow ones, and vice versa

Re-Ordering

order takes in a vector, and returns the vector of indices which would put it in order (increasing by default)
- Use the decreasing=TRUE option to change that - Output of order can be saved to re-order multiple
dataframes the same way

order (cont’d.)

head(cats,4)

Sex Bwt Hwt
1 F 2.0 7.0
2 F 2.0 7.4
3 F 2.0 9.5
4 F 2.1 7.2

head(order(cats$Hwt))

[1] 31 48 49 1 13 4

head(cats[order(cats$Hwt),],4)

Sex Bwt Hwt
31 F 2.4 6.3
48 M 2.0 6.5
49 M 2.0 6.5
1 F 2.0 7.0

8

Related to order

• rank(x) does not deliver the same thing as order(x)!
• sort returns the sorted vector, not the ordering

head(sort(cats$Hwt))

[1] 6.3 6.5 6.5 7.0 7.1 7.2

• To just get the index of the smallest or largest element, use which.min or which.max

which.min(cats$Hwt) == order(cats$Hwt)[1]

[1] TRUE

Flipping Arrays

• To transpose, converting rows to columns, use t(x)

– Use cautiously on dataframes!

• Use aperm similarly for higher-dimensional arrays

Merging Dataframees

You have two dataframes, say movies.info and movies.biz, and you want to combine them into one
dataframe, say movies

• Simplest case: the dataframes have exactly the same number of rows, that the rows represent exactly
the same units, and you want all columns from both

movies <- data.frame(movies.info, movies.biz)

Merging Dataframes (cont’d.)

• Next best case: you know that the two dataframes have the same rows, but you only want certain
columns from each

movies <- data.frame(year=movies.info$year,
avg_rating=movies.info$avg_rating,
num_rates=movies.info$num_raters,
genre=movies.info$genre,
gross=movies.biz$gross)

9

Merging Dataframes (cont’d.)

• Next best case: same number of rows but in different order

– Put one of them in the same order as the other
– Use merge

• Worse cases: different numbers of rows. . .

– Cleverer re-ordering tricks
– Use merge

An Example That Is Not Part of the Midterm

Claim: People in larger cities travel more

More precise claim: miles driven per person per day increases with the area of the city

Example of Merging (cont’d.)

Distance driven, and city population: table HM-71 in the 2011 “Highway Statistics Series” [http://www.fhwa.
dot.gov/policyinformation/statistics/2011/hm71.cfm]

fha <- read.csv("fha.csv",na.strings="NA",
colClasses=c("character","double","double","double"))

nrow(fha)

[1] 498

colnames(fha)

[1] "City" "Population" "Miles.of.Road"
[4] "Daily.Miles.Traveled"

Example of Merging (cont’d.)

Area and population of “urbanized areas”: [http://www2.census.gov/geo/ua/ua_list_all.txt]

ua <- read.csv("ua.txt",sep=";")
nrow(ua)

[1] 3598

colnames(ua)

[1] "UACE" "NAME" "POP" "HU"
[5] "AREALAND" "AREALANDSQMI" "AREAWATER" "AREAWATERSQMI"
[9] "POPDEN" "LSADC"

10

http://www.fhwa.dot.gov/policyinformation/statistics/2011/hm71.cfm
http://www.fhwa.dot.gov/policyinformation/statistics/2011/hm71.cfm
http://www2.census.gov/geo/ua/ua_list_all.txt

Example of Merging (cont’d.)

This isn’t a simple case, because:

1. ≈ 500 cities vs. ≈ 4000 “urbanized areas”
2. fha orders cities by population, ua is alphabetical by name
3. Both have place-names, but those don’t always agree
4. Not even common names for the shared columns

But both use the same Census figures for population, and it turns out every settlement (in the top 498) has a
unique Census population:

length(unique(fha$Population)) == nrow(fha)

[1] TRUE

identical(fha$Population,sort(ua$POP[1:nrow(fha)],decreasing=TRUE))

[1] FALSE

Example of Merging (cont’d.)

Option 1: re-order the 2nd table by population

ua <- ua[order(ua$POP,decreasing=TRUE),]
df1 <- data.frame(fha, area=ua$AREALANDSQMI[1:nrow(fha)])
Neaten up names
colnames(df1) <- c("City","Population","Roads","Mileage","Area")
nrow(df1)

[1] 498

head(df1)

City Population Roads Mileage Area
1 New York--Newark, NY--NJ--CT 18351295 43893 286101 3450
2 Los Angeles--Long Beach--Anaheim, CA 12150996 24877 270807 1736
3 Chicago, IL--IN 8608208 25905 172708 2443
4 Miami, FL 5502379 15641 125899 1239
5 Philadelphia, PA--NJ--DE--MD 5441567 19867 99190 1981
6 Dallas--Fort Worth--Arlington, TX 5121892 21610 125389 1779

Example of Merging (cont’d.)

Option 2: Use the merge function

11

df2 <- merge(x=fha,y=ua,
by.x="Population",by.y="POP")

nrow(df2)

[1] 498

tail(df2,3)

Population City Miles.of.Road
496 8608208 Chicago, IL--IN 25905
497 12150996 Los Angeles--Long Beach--Anaheim, CA 24877
498 18351295 New York--Newark, NY--NJ--CT 43893
Daily.Miles.Traveled UACE NAME
496 172708 16264 Chicago, IL--IN
497 270807 51445 Los Angeles--Long Beach--Anaheim, CA
498 286101 63217 New York--Newark, NY--NJ--CT
HU AREALAND AREALANDSQMI AREAWATER AREAWATERSQMI POPDEN LSADC
496 3459257 6.327e+09 2443 105649916 40.79 3524 75
497 4217448 4.496e+09 1736 61141327 23.61 6999 75
498 7263095 8.936e+09 3450 533176599 205.86 5319 75

merge

• by.x and by.y say which columns need to match to do a merge

– Default: merge on all columns with shared names

• New dataframe has all the columns of both dataframes

– Here, should really delete the ones we don’t need and tidy colnames

• If you know databases, then merge is doing a JOIN

– If you don’t know what that means, wait until November

Example of Merging (cont’d.)

You’d think merging on names would be easy. . .

df2.1 <- merge(x=fha,y=ua,by.x="City", by.y="NAME")
nrow(df2.1)

[1] 492

Example of Merging (cont’d.)

We can force unmatched rows of either dataframe to be included, with NA values as appropriate:

12

df2.2 <- merge(x=fha,y=ua,by.x="City",by.y="NAME",all.x=TRUE)
nrow(df2.2)

[1] 498

Database speak: takes us from a “natural join” to a “left outer join”

Example of Merging (cont’d.)

Where are the mis-matches?

df2.2$City[is.na(df2.2$POP)]

[1] "Aguadilla--Isabela--San Sebastián, PR"
[2] "Danville, VA – NC"
[3] "Florida--Imbéry--Barceloneta, PR"
[4] "Juana Díaz, PR"
[5] "Mayagüez, PR"
[6] "San Germán--Cabo Rojo--Sabana Grande, PR"

On investigation, fha.csv and ua.txt use 2 different encodings for accent characters, and one writes things
like VA -- NC and the other says VA--NC

Using order+data.frame vs. merge

• Re-ordering is easier to grasp; merge takes some learning
• Re-ordering is simplest when there’s only one column to merge on; merge handles many columns
• Re-orderng is simplest when the dataframes are the same size; merge handles

So, Do Bigger Cities Mean More Driving?

Convert 1,000s of miles to miles
df1$Mileage <- 1000*df1$Mileage
Plot daily miles per person vs. area
plot(Mileage/Population ~ Area, data=df1, log="x",

xlab="Miles driven per person per day",
ylab="City area in square miles")

Impressively flat regression line
abline(lm(Mileage/Population~Area,data=df1),col="blue")

13

10 20 50 100 200 500 1000 2000

0
20

40
60

80

Miles driven per person per day

C
ity

 a
re

a
in

 s
qu

ar
e

m
ile

s

Take-Aways

• Boolean vectors and vectors of indices to access selected parts of the data
• apply and friends for doing the same thing to all parts of the data
• Numerical transformations
• Re-ordering dataframes
• Merging dataframes with merge

Bonus Topic: Reshaping

• Common to have data where some variables identify units, and others are measurements

• Wide form: columns for ID variables plus 1 column per measurement

– Good for things like correlating measurements, or running regressions

• Narrow form: columns for ID variables, plus 1 column identifying measurement, plus 1 column giving
value

– Good for summarizing, subsetting

Often want to convert from wide to narrow, or change what’s ID and what’s measure

reshape2

• Base R has reshape function but it’s tricky
• reshape2 package simplifies lots of common uses

14

• melt turns a wide dataframe into a narrow one
• dcast turns a narrow dataframe into a wide one

– acast turns a narrow dataframe into a wide array

Reshaping Example

• snoqualmie.csv has precipitation every day in Snoqualmie, WA for 36 years (1948–1983)
• One row per year, one column per day, units of 1/100 inch

From P. Guttorp, Stochastic Modeling of Scientific Data (London: Chapman and Hall, 1995)

snoq <- read.csv("snoqualmie.csv",header=FALSE)
colnames(snoq) <- 1:366
snoq[1:3,1:6]

1 2 3 4 5 6
1 136 100 16 80 10 66
2 17 14 0 0 1 11
3 1 35 13 13 18 122

snoq$year <- 1948:1983

Reshaping Example (cont’d.)

Loading required package: reshape2

snoq.melt <- melt(snoq,id.vars="year",
variable.name="day",value.name="precip")

head(snoq.melt)

year day precip
1 1948 1 136
2 1949 1 17
3 1950 1 1
4 1951 1 34
5 1952 1 0
6 1953 1 2

Reshaping Example (cont’d.)

Being sorted by day of the year and then by year is a bit odd

snoq.melt.chron <- snoq.melt[order(snoq.melt$year,snoq.melt$day),]
head(snoq.melt.chron)

15

year day precip
1 1948 1 136
37 1948 2 100
73 1948 3 16
109 1948 4 80
145 1948 5 10
181 1948 6 66

Reshaping Example (cont’d.)

Most years have 365 days so some missing values:

sum(is.na(snoq.melt.chron$precip[snoq.melt.chron$day==366]))

[1] 27

Tidy with na.omit:

snoq.melt.chron <- na.omit(snoq.melt.chron)

Reshaping Example (cont’d.)

Today’s precipitation vs. next day’s:

snoq.pairs <- data.frame(snoq.melt.chron[-nrow(snoq.melt.chron),],
precip.next=snoq.melt.chron$precip[-1])

head(snoq.pairs)

year day precip precip.next
1 1948 1 136 100
37 1948 2 100 16
73 1948 3 16 80
109 1948 4 80 10
145 1948 5 10 66
181 1948 6 66 88

Reshaping Example (cont’d.)

• dcast turns back into wide form, with a formula of IDs ~ measures

snoq.recast <- dcast(snoq.melt,year~...)

Using precip as value column: use value.var to override.

dim(snoq.recast)

[1] 36 367

16

snoq.recast[1:4,1:4]

year 1 2 3
1 1948 136 100 16
2 1949 17 14 0
3 1950 1 35 13
4 1951 34 183 11

• acast casts into an array rather than a dataframe

Reshaping (cont’d.)

• The formula could also specify multiple ID variables (including original measure variables), different
measure variables (including original ID variables). . .

• Also possible to apply functions to aggregates which all have the same IDs, select subsets of the data,
etc.

• Strongly recommended reading:

Hadley Wickham, “Reshaping Data with the reshape Package”, Journal of Statistical Software 21
(2007): 12, [http://www.jstatsoft.org/v21/i12]

17

http://www.jstatsoft.org/v21/i12

	In Previous Episodes
	Agenda
	Not Our Only Example, Really
	Access Tricks
	Access Tricks (cont'd.)
	Access Tricks (cont'd.)
	Access Tricks: Don't Do These
	Access Tricks: Don't Do These (cont'd.)
	Apply Tricks
	Apply Tricks (cont'd.)
	Apply Tricks: Vectors
	Apply Tricks: Rows
	Apply Tricks: Columns
	Apply Tricks: Multiple Vectors or Columns
	Transformations
	Lossless vs. Lossy
	Some Common Transformations of Numerical Data
	Numerical Transformations (cont'd.)
	Numerical Transformations (cont'd.)
	Numerical Transformations (cont'd.)
	Numerical Transformations (cont'd.)
	Numerical Transformations (cont'd.)
	Summarizing Subsets
	Summarizing Subsets (cont'd.)
	Summarizing Subsets (cont'd.)
	Re-Organizing
	Re-Ordering
	order (cont'd.)
	Related to order
	Flipping Arrays
	Merging Dataframees
	Merging Dataframes (cont'd.)
	Merging Dataframes (cont'd.)
	An Example That Is Not Part of the Midterm
	Example of Merging (cont'd.)
	Example of Merging (cont'd.)
	Example of Merging (cont'd.)
	Example of Merging (cont'd.)
	Example of Merging (cont'd.)
	merge
	Example of Merging (cont'd.)
	Example of Merging (cont'd.)
	Example of Merging (cont'd.)
	Using order+data.frame vs. merge
	So, Do Bigger Cities Mean More Driving?
	Take-Aways
	Bonus Topic: Reshaping
	reshape2
	Reshaping Example
	Reshaping Example (cont'd.)
	Reshaping Example (cont'd.)
	Reshaping Example (cont'd.)
	Reshaping Example (cont'd.)
	Reshaping Example (cont'd.)
	Reshaping (cont'd.)

