
Lecture 15: Top-Down Design and Refactoring
36-350

15 October 2014

In Previous Episodes

• Functions
• Multiple functions
• Debugging
• Testing

Agenda

• Top-down design of programs
• Re-factoring existing code to a better design
• Example: Jackknife

Abstraction

• The point of abstraction: program in ways which don’t use people as bad computers
• Economics says: rely on comparative advantage

– Computers: Good at tracking arbitrary details, applying rigid rules
– People: Good at thinking, meaning, discovering patterns

• ∴ organize programming so that people spend their time on the big picture, and computers on the little
things

Abstraction

• Abstraction — hiding details and specifics, dealing in generalities and common patterns — is a way to
program so you do what you’re good at, and the computer does what it’s good at

• We have talked about lots of examples of this already

– Names; data structures; functions; interfaces

Top-Down Design

• Start with the big-picture view of the problem
• Break the problem into a few big parts
• Figure out how to fit the parts together
• Go do this for each part

1

The Big-Picture View

• Resources: what information is available as part of the problem?

– Usually arguments to a function

• Requirements: what information do we want as part of the solution?

– Usually return values

• What do we have to do to transform the problem statement into a solution?

Breaking Into Parts

• Try to break the calculation into a few (say ≤ 5) parts

– Bad: write 500 lines of code, chop it into five 100-line blocks
– Good: each part is an independent calculation, using separate data

• Advantages of the good way:

– More comprehensible to human beings
– Easier to improve and extend (respect interfaces)
– Easier to debug
– Easier to test

Put the Parts Together

• Assume that you can solve each part, and their solutions are functions
• Write top-level code for the function which puts those steps together:

Not actual code
big.job <- function(lots.of.arguments) {

intermediate.result <- first.step(some.of.the.args)
final.result <- second.step(intermediate.result,rest.of.the.args)
return(final.result)

}

• The sub-functions don’t have to be written when you declare the main function, just when you run it

What About the Sub-Functions?

• Recursion: Because each sub-function solves a single well-defined problem, we can solve it by top-down
design

• The step above tells you what the arguments are, and what the return value must be (interface)
• The step above doesn’t care how you turn inputs to output (internals)
• Stop when we hit a sub-problem we can solve in a few steps with built-in functions

2

What About the Sub-Functions?

credit: [http://cheezburger.com/View/4517375744]

Thinking Algorithmically

• Top-down design only works if you understand

– the problem, and

3

http://cheezburger.com/View/4517375744

– a systematic method for solving the problem

• ∴ it forces you to think algorithmically
• First guesses about how to break down the problem are often wrong

– but functional approach contains effects of changes
– ∴ don’t be afraid to change the design

Combining the Practices

• Top-down design fits naturally with functional coding

– Each piece of code has a well-defined interface, no (or few) side-effects

• Top-down design makes debugging easier

– Easier to see where the bug occurs (higher-level function vs. sub-functions)
– Easier to fix the bug by changing just one piece of code

• Top-down design makes testing easier
• Each function has one limited job

Refactoring

• One mode of abstraction is refactoring

• The metaphor: numbers can be factored in many different ways; pick ones which emphasize the common
factors

144 = 9 × 16 = 3 × 3 × 4 × 2 × 2
360 = 6 × 60 = 3 × 3 × 4 × 2 × 5

Then you can re-use the common part of the work

Refactoring

Once we have some code, and it (more or less) works, re-write it to emphasize commonalities:

• Parallel and transparent naming
• Grouping related values into objects
• Common or parallel sub-tasks become shared functions
• Common or parallel over-all tasks become general functions

Grouping into Objects

• Notice that the same variables keep being used together
• Create a single data object (data frame, list, . . .) that includes them all as parts
• Replace mentions of the individual variables with mentions of parts of the unified object

4

Advantages of Grouping

• Clarity (especially if you give the object a good name)
• Makes sure that the right values are always present (pass the object as an argument to functions, rather

than the components)
• Memorization: if you know you are going to want to do the same calculation many times on these data

values, do it once when you create the object, and store the result as a component

Extracting the Common Sub-Task

• Notice that your code does the same thing, or nearly the same thing, in multiple places, as part doing
something else

• Extract the common operation
• Write one function to do that operation, perhaps with additional arguments
• Call the new function in the old locations

Advantages of Extracting Common Operations

• Main code focuses on what is to be done, not how (abstraction, human understanding)
• Only have to test (and debug) one piece of code for the sub-task
• Improvements to the sub-task propagate everywhere

– Drawback: bugs propagate everywhere too

Extracting General Operations

• Notice that you have several functions doing parallel, or nearly parallel, operations
• Extract the common pattern or general operation
• Write one function to do the general operation, with additional arguments (typically including functions)
• Call the new general function with appropriate arguments, rather than the old functions

Advantages of Extracting General Patterns

• Clarifies the logic of what you are doing (abstraction, human understanding, use of statistical theory)
• Extending the same operation to new tasks is easy, not re-writing code from scratch
• Old functions provide test cases to check if general function works
• Separate testing/debugging “puts the pieces together properly” from “gets the small pieces right”

Refactoring vs. Top-down design

Re-factoring tends to make code look more like the result of top-down design

This is no accident

5

Extended example: the jackknife

• Have an estimator θ̂ of parameter θ
want the standard error of our estimate, seθ̂

• The jackknife approximation:

– omit case i, get estimate θ̂(−i)

– Take the variance of all the θ̂(−i)

– multiply that variance by (n−1)2

n to get ≈ variance of θ̂

• then seθ̂ = square root of that variance

(Why (n− 1)2/n? Think about just getting the standard error of the mean)

Jackknife for the mean

mean.jackknife <- function(a_vector) {
n <- length(a_vector)
jackknife.ests <- vector(length=n)
for (omitted.point in 1:n) {

jackknife.ests[omitted.point] <- mean(a_vector[-omitted.point])
}
variance.of.ests <- var(jackknife.ests)
jackknife.var <- ((n-1)^2/n)*variance.of.ests
jackknife.stderr <- sqrt(jackknife.var)
return(jackknife.stderr)

}

Jackknife for the mean

some_normals <- rnorm(100,mean=7,sd=5)
mean(some_normals)

[1] 7.668

(formula_se_of_mean <- sd(some_normals)/sqrt(length(some_normals)))

[1] 0.4844

all.equal(formula_se_of_mean,mean.jackknife(some_normals))

[1] TRUE

6

Jackknife for Gamma Parameters

Recall our friend the method of moments estimator:

gamma.est <- function(the_data) {
m <- mean(the_data)
v <- var(the_data)
a <- m^2/v
s <- v/m
return(c(a=a,s=s))

}

Jackknife for Gamma Parameters

gamma.jackknife <- function(a_vector) {
n <- length(a_vector)
jackknife.ests <- matrix(NA,nrow=2,ncol=n)
rownames(jackknife.ests) = c("a","s")
for (omitted.point in 1:n) {

fit <- gamma.est(a_vector[-omitted.point])
jackknife.ests["a",omitted.point] <- fit["a"]
jackknife.ests["s",omitted.point] <- fit["s"]

}
variance.of.ests <- apply(jackknife.ests,1,var)
jackknife.vars <- ((n-1)^2/n)*variance.of.ests
jackknife.stderrs <- sqrt(jackknife.vars)
return(jackknife.stderrs)

}

Jackknife for Gamma Parameters

data("cats",package="MASS")
gamma.est(cats$Hwt)

a s
19.0653 0.5576

gamma.jackknife(cats$Hwt)

a s
2.74062 0.07829

Jackknife for linear regression coefficients

7

jackknife.lm <- function(df,formula,p) {
n <- nrow(df)
jackknife.ests <- matrix(0,nrow=p,ncol=n)
for (omit in 1:n) {

new.coefs <- lm(as.formula(formula),data=df[-omit,])$coefficients
jackknife.ests[,omit] <- new.coefs

}
variance.of.ests <- apply(jackknife.ests,1,var)
jackknife.var <- ((n-1)^2/n)*variance.of.ests
jackknife.stderr <- sqrt(jackknife.var)
return(jackknife.stderr)

}

Jackknife for linear regression coefficients

cats.lm <- lm(Hwt~Bwt,data=cats)
coefficients(cats.lm)

(Intercept) Bwt
-0.3567 4.0341

"Official" standard errors
sqrt(diag(vcov(cats.lm)))

(Intercept) Bwt
0.6923 0.2503

jackknife.lm(df=cats,formula="Hwt~Bwt",p=2)

[1] 0.8314 0.3167

Refactoring the Jackknife

• Omitting one point or row is a common sub-task

• The general pattern:

figure out the size of the data
for each case

omit that case
repeat some estimation and get a vector of numbers

take variances across cases
scale up variances
take the square roots

• Refactor by extracting the common “omit one” operation

• Refactor by defining a general “jackknife” operation

8

The Common Operation

• Problem: Omit one particular data point from a larger structure

• Difficulty: Do we need a comma in the index or not?

• Solution: Works for vectors, lists, 1D and 2D arrays, matrices, data frames:

omit.case <- function(the_data,omitted_point) {
data_dims <- dim(the_data)
if (is.null(data_dims) || (length(data_dims)==1)) {

return(the_data[-omitted_point])
} else {

return(the_data[-omitted_point,])
}

}

Exercise: Modify so it also handles higher-dimensional arrays

The General Operation

jackknife <- function(estimator,the_data) {
if (is.null(dim(the_data))) { n <- length(the_data) }
else { n <- nrow(the_data) }
omit_and_est <- function(omit) {

estimator(omit.case(the_data,omit))
}
jackknife.ests <- matrix(sapply(1:n, omit_and_est), ncol=n)
var.of.reestimates <- apply(jackknife.ests,1,var)
jackknife.var <- ((n-1)^2/n)* var.of.reestimates
jackknife.stderr <- sqrt(jackknife.var)
return(jackknife.stderr)

}

Could allow other arguments to estimator, spin off finding n as its own function, etc.

It works

jackknife(estimator=mean,the_data=some_normals)

[1] 0.4844

all.equal(jackknife(estimator=mean,the_data=some_normals),
mean.jackknife(some_normals))

[1] TRUE

9

It works

all.equal(jackknife(estimator=gamma.est,the_data=cats$Hwt),
gamma.jackknife(cats$Hwt))

[1] "names for current but not for target"

It works

all.equal(jackknife(estimator=gamma.est,the_data=cats$Hwt),
gamma.jackknife(cats$Hwt), check.names=FALSE)

[1] TRUE

Exercise: Have jackknife() figure out component names for its output, if estimator has named components

It works

est.coefs <- function(the_data) {
return(lm(Hwt~Bwt,data=the_data)$coefficients)

}
est.coefs(cats)

(Intercept) Bwt
-0.3567 4.0341

all.equal(est.coefs(cats), coefficients(cats.lm))

[1] TRUE

It works

jackknife(estimator=est.coefs,the_data=cats)

[1] 0.8314 0.3167

all.equal(jackknife(estimator=est.coefs,the_data=cats),
jackknife.lm(df=cats,formula="Hwt~Bwt",p=2))

[1] TRUE

10

Refactoring + Testing

We have just tested the new code against the old to make sure we’ve not added errors

i.e., we have done regression testing

Summary

1. Top-down design is a recursive heuristic for coding

• Split your problem into a few sub-problems; write code tying their solutions together
• If any sub-problems still need solving, go write their functions

2. Leads to multiple short functions, each solving a limited problem
3. Disciplines you to think algorithmically
4. Once you have working code, re-factor it to make it look more like it came from a top-down design

• Factor out similar or repeated sub-operations
• Factor out common over-all operations

Further Refactoring of jackknife()

The code for jackknife() is still a bit clunky: - Ugly if-else for finding n - Bit at the end for scaling
variances down to standard errors

Further Refactoring of jackknife()

data_size <- function(the_data) {
if (is.null(dim(the_data))) { n <- length(the_data) }
else { n <- nrow(the_data) }

}

scale_and_sqrt_vars <- function(jackknife.ests,n) {
var.of.reestimates <- apply(jackknife.ests,1,var)
jackknife.var <- ((n-1)^2/n)* var.of.reestimates
jackknife.stderr <- sqrt(jackknife.var)
return(jackknife.stderr)

}

Further Refactoring of jackknife()

Now invoke those functions

jackknife <- function(estimator,the_data) {
n <- data_size(the_data)
omit_and_est <- function(omit) {

estimator(omit.case(the_data,omit))

11

}
jackknife.ests <- matrix(sapply(1:n, omit_and_est), ncol=n)
return(scale_and_sqrt_vars(jackknife.ests,n))

}

12

	In Previous Episodes
	Agenda
	Abstraction
	Abstraction
	Top-Down Design
	The Big-Picture View
	Breaking Into Parts
	Put the Parts Together
	What About the Sub-Functions?
	What About the Sub-Functions?
	Thinking Algorithmically
	Combining the Practices
	Refactoring
	Refactoring
	Grouping into Objects
	Advantages of Grouping
	Extracting the Common Sub-Task
	Advantages of Extracting Common Operations
	Extracting General Operations
	Advantages of Extracting General Patterns
	Refactoring vs. Top-down design
	Extended example: the jackknife
	Jackknife for the mean
	Jackknife for the mean
	Jackknife for Gamma Parameters
	Jackknife for Gamma Parameters
	Jackknife for Gamma Parameters
	Jackknife for linear regression coefficients
	Jackknife for linear regression coefficients
	Refactoring the Jackknife
	The Common Operation
	The General Operation
	It works
	It works
	It works
	It works
	It works
	Refactoring + Testing
	Summary
	Further Refactoring of jackknife()
	Further Refactoring of jackknife()
	Further Refactoring of jackknife()

