
Lecture 16: Functions as Objects
36-350

20 October 2014

Previously. . .

• Writing our own functions
• Dividng labor with multiple functions
• Refactoring to create higher-level operations
• Using apply, sapply, etc., to avoid iteration

Agenda

• Functions are objects, and can be arguments to other functions
• Functions are objects, and can be returned by other functions
• Example: surface

Reading: Sections 7.5, 7.11 and 7.13 of Matloff

Optional Recommended Reading: Chapter 3 of Chambers

Functions as Objects

• In R, functions are objects, just like everything else

• This means that they can be passed to functions as arguments
and returned by functions as outputs as well

Functions of Functions: Computationally

• We often want to do very similar things to many different functions

• The procedure is the same, only the function we’re working with changes

• ∴ Write one function to do the job, and pass the function as an argument

• Because R treats a function like any other object, we can do this simply: invoke the function by its
argument name in the body

• We have already seen examples

R Functions That Take Functions as Arguments

• apply(), sapply(), etc.: Take this function and use it on all of these objects
• nlm(): Take this function and try to make it small, starting from here
• ks.test(): Compare these data to this cumulative distribution function
• curve(): Evaluate this function over that range, and plot the results
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Some R Syntax Facts About Functions

• Typing a function’s name, without parentheses, in the terminal gives you its source code:

sample

## function (x, size, replace = FALSE, prob = NULL)
## {
## if (length(x) == 1L && is.numeric(x) && x >= 1) {
## if (missing(size))
## size <- x
## sample.int(x, size, replace, prob)
## }
## else {
## if (missing(size))
## size <- length(x)
## x[sample.int(length(x), size, replace, prob)]
## }
## }
## <bytecode: 0x10698da98>
## <environment: namespace:base>

Some R Syntax Facts About Functions

• Functions are their own class in R:

class(sin)

## [1] "function"

class(sample)

## [1] "function"

resample <- function(x) { sample(x, size=length(x), replace=TRUE) }
class(resample)

## [1] "function"

Some R Syntax Facts About Functions

• Functions can be put into lists or even arrays
• A call to function returns a function object

– body executed; access with body(foo)
– arguments required: access with formals(foo)

gives argument list of foo: names are argument names, values are expressions for defaults (if any)
– parent environment: access with environment(foo)
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Some R Syntax Facts About Functions

• R has separate types for built-in functions and for those written in R:

typeof(resample)

## [1] "closure"

typeof(sample)

## [1] "closure"

typeof(sin)

## [1] "builtin"

Why closure for written-in-R functions? Because expressions are “closed” by referring to the parent
environment

There’s also a 2nd class of built-in functions called primitive

Anonymous Functions

• function() returns an object of class function
• So far we’ve assigned that object to a name
• If we don’t have an assignment, we get an anonymous function
• Usually part of some larger expression:

sapply((-2):2,function(log.ratio){exp(log.ratio)/(1+exp(log.ratio))})

## [1] 0.1192 0.2689 0.5000 0.7311 0.8808

Anonymous Functions

• Often handy when connecting other pieces of code
– especially in things like apply and sapply

• Won’t cluttering the workspace
• Can’t be examined or re-used later

Example: grad()

• Problems in stats. come down to optimization
So do lots of problems in econ., physics, CS, bio, . . .

• Lots of optimization problems require the gradient of the objective function

• Gradient of f at x:

∇f(x) =
[
∂f

∂x1

∣∣∣∣
x

. . .
∂f

∂xp

∣∣∣∣
x

]

3



Example: grad()

• We do the same thing to get the gradient of f at x no matter what f is:

find the partial derivative of f with respect to each component of x
return the vector of partial derivatives

• It makes no sense to re-write this every time we change f !

• ∴ write code to calculate the gradient of an arbitrary function

• We could write our own, but there are lots of tricky issues

– Best way to calculate partial derivative
– What if x is at the edge of the domain of f?

• Fortunately, someone has already done this

Example: grad()

From the package numDeriv

grad(func, x, ...) # Plus other arguments

• Assumes func is a function which returns a single floating-point value
• Assumes x is a vector of arguments to func

– If x is a vector and func(x) is also a vector, then it’s assumed func is vectorized and we get a
vector of derivatives

• Extra arguments in ... get passed along to func
• Other functions in the package for the Jacobian of a vector-valued function, and the matrix of 2nd

partials (Hessian)

Example: grad()

• Does it work as advertized?

require("numDeriv")

## Loading required package: numDeriv

just_a_phase <- runif(n=1,min=-pi,max=pi)
all.equal(grad(func=cos,x=just_a_phase),-sin(just_a_phase))

## [1] TRUE
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phases <- runif(n=10,min=-pi,max=pi)
all.equal(grad(func=cos,x=phases),-sin(phases))

## [1] TRUE

grad(func=function(x){x[1]^2+x[2]^3}, x=c(1,-1))

## [1] 2 3

Note: grad is perfectly happy with func being an anonymous function!

gradient.descent()

Now we can use this as a piece of a larger machine:

gradient.descent <- function(f,x,max.iterations,step.scale,
stopping.deriv,...) {
for (iteration in 1:max.iterations) {
gradient <- grad(f,x,...)
if(all(abs(gradient) < stopping.deriv)) { break() }
x <- x - step.scale*gradient

}
fit <- list(argmin=x,final.gradient=gradient,final.value=f(x,...),
iterations=iteration)

return(fit)
}

• Works equally well whether f is mean squared error of a regression, ψ error of a regression, (negative
log) likelihood, cost of a production plan, . . .

Cautions

• Scoping f takes values for all names which aren’t its arguments from the environment where it was
defined, not the one where it is called (e.g., not from inside grad or gradient.descent)

• Debugging If f and g are both complicated, avoid debugging g(f) as a block; divide the work by writing
very simple f.dummy to debug/test g, and debug/test the real f separately

Returning Functions: A trivial example

Functions can be return values like anything else

make.noneuclidean <- function(ratio.to.diameter=pi) {
circumference <- function(d) { return(ratio.to.diameter*d) }
return(circumference)

}
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Returning Functions: A trivial example (cont’d.)

try(circumference(10))
kings.i <- make.noneuclidean(3)
try(kings.i(10))

## [1] 30

formals(kings.i)

## $d

body(kings.i)

## {
## return(ratio.to.diameter * d)
## }

environment(kings.i)

## <environment: 0x100fa9178>

try(circumference(10))

A Less Trivial Example

Create a linear predictor, based on sample values of two variables

make.linear.predictor <- function(x,y) {
linear.fit <- lm(y~x)
predictor <- function(x) {
return(predict(object=linear.fit,newdata=data.frame(x=x)))
}
return(predictor)

}

The predictor function persists and works, even when the data we used to create it is gone

A Less Trivial Example

library(MASS); data(cats)
vet_predictor <- make.linear.predictor(x=cats$Bwt,y=cats$Hwt)
rm(cats) # Data set goes away
vet_predictor(3.5) # My cat's body mass in kilograms

## 1
## 13.76

6



A more mathematical example

• Instead of finding ∇f(x), find the function ∇f :

nabla <- function(f,...) {
require("numDeriv")
g <- function(x,...) { grad(func=f,x=x,...) }
return(g)

}

Exercise: Write a test case!

Example: curve()

• You learned to use curve in the first week (because you did all of the assigned reading, including section
2.3.3 of the textbook)

• A call to curve looks like this:

curve(expr, from = a, to = b, ...)

expr is some expression involving a variable called x
which is swept from the value a to the value b
... are other plot-control arguments

• curve feeds the expression a vector x and expects a numeric vector back, e.g.

curve(x^2 * sin(x))

is fine

Using curve() with our own functions

• If we have defined a function already, we can use it in curve:

psi <- function(x,c=1) {ifelse(abs(x)>c,2*c*abs(x)-c^2,x^2)}
curve(psi(x,c=10),from=-20,to=20)

Try this! Also try

curve(psi(x=10,c=x),from=-20,to=20)

and explain it to yourself

Using curve() with our own functions

• If our function doesn’t take vectors to vectors, curve becomes unhappy
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mse <- function(y0,a,Y=gmp$pcgmp,N=gmp$pop) {
mean((Y - y0*(N^a))^2)

}

> curve(mse(a=x,y0=6611),from=0.10,to=0.15)
Error in curve(mse(a = x, y0 = 6611), from = 0.1, to = 0.15) :

'expr' did not evaluate to an object of length 'n'
In addition: Warning message:
In N^a : longer object length is not a multiple of shorter object length

How do we solve this?

Using curve() with our own functions

• Define a new, vectorized function, say with sapply:

sapply(seq(from=0.10,to=0.15,by=0.01),mse,y0=6611)

## [1] 154701953 102322974 68755654 64529166 104079527 207057513

mse(6611,0.10)

## [1] 154701953

mse.plottable <- function(a,...){ return(sapply(a,mse,...)) }
mse.plottable(seq(from=0.10,to=0.15,by=0.01),y0=6611)

## [1] 154701953 102322974 68755654 64529166 104079527 207057513

Using curve() with our own functions

curve(mse.plottable(a=x,y0=6611),from=0.10,to=0.20,xlab="a",ylab="MSE")
curve(mse.plottable(a=x,y0=5100),add=TRUE,col="blue")
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Using curve() with our own functions

• Alternate strategy: Vectorize() returns a new, vectorized function

mse.vec <- Vectorize(mse, vectorize.args=c("y0","a"))
mse.vec(a=seq(from=0.10,to=0.15,by=0.01),y0=6611)

## [1] 154701953 102322974 68755654 64529166 104079527 207057513

mse.vec(a=1/8,y0=c(5000,6000,7000))

## [1] 134617132 74693733 63732256

Using curve() with our own functions

curve(mse.vec(a=x,y0=6611),from=0.10,to=0.20,xlab="a",ylab="MSE")
curve(mse.vec(a=x,y0=5100),add=TRUE,col="blue")
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Example: surface()

• curve takes an expression and, as a side-effect, plots a 1-D curve by sweeping over x

• Suppose we want something like that but sweeping over two variables

• Built-in plotting function contour:

contour(x,y,z, [[other stuff]])

x and y are vectors of coordinates, z is a matrix of the corresponding shape
(see help(contour) for graphical options)

• Strategy: surface should make x and y sequences, evaluate the expression at each combination to get
z, and then call contour

First attempt at surface()

• Only works with vector-to-number functions:

surface.1 <- function(f,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
plot.grid <- expand.grid(x=x.seq,y=y.seq)
z.values <- apply(plot.grid,1,f)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix))

}
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First attempt at surface()

surface.1(function(p){return(sum(p^3))},from.x=-1,from.y=-1)
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Expressions and Evaluation

• curve doesn’t require us to write a function every time — what’s it’s trick?

• Expressions are just another class of R object, so they can be created and manipulated

• One manipulation is evaluation

eval(expr,envir)

evaluates the expression expr in the environment envir, which can be a data frame or even just a list

• When we type something like xˆ2+yˆ2 as an argument to surface.1, R tries to evaluate it prematurely

• substitute returns the unevaluted expression

• curve uses first substitute(expr) and then eval(expr,envir), having made the right envir

Second attempt at surface()

surface.2 <- function(expr,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
plot.grid <- expand.grid(x=x.seq,y=y.seq)
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unevaluated.expression <- substitute(expr)
z.values <- eval(unevaluated.expression,envir=plot.grid)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix))

}

Second attempt at surface()

surface.2(abs(x^3)+abs(y^3),from.x=-1,from.y=-1)
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Evaluating at Combinations

• Evaluating a function at every combination of two arguments is a really common task

• There is a function to do it for us: outer

Third attempt at surface()

surface.3 <- function(expr,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
unevaluated.expression <- substitute(expr)
z <- function(x,y) {

return(eval(unevaluated.expression,envir=list(x=x,y=y)))
}
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z.values <- outer(X=x.seq,Y=y.seq,FUN=z)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix, func=z))

}

Third attempt at surface()

surface.3(x^4-y^4,from.x=-1,from.y=-1)
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surface()

surface.3(mse.vec(a=x,y0=y),from.x=0.10,to.x=0.15,
from.y=6e3,to.y=7e3,nlevels=20)
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Summary

• In R, functions are objects, and can be arguments to other functions

– Use this to do the same thing to many different functions
– Separates writing the high-level operations and the first-order functions
– Use sapply (etc.), wrappers, anonymous functions as adapters

• Functions can also be returned by other functions

– Variables other than the arguments to the function are fixed by the environment of creation
– Manipulating expressions lets us flexibly create functions

Functions of Functions: Mathematically

• Maximum, and location of the maximum: takes f , gives number

max
x

f(x) , argmaxxf(x)

• Derivative of f at x0: takes a function and a point, gives a number

df

dx
(x0) ≡ lim

h→0

f(x0 + h)− f(x0)
h

• Definite integral of f over [a, b]: takes a function and two points, gives a number∫ b

a

f(x)dx ≡ lim
n→∞

n−1∑
i=0

(
b− a
n

)
f

(
a+ i

b− a
n

)
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Mathematical view cont’d.

• Functions of functions which return numbers sometimes are sometimes called functionals, e.g., expec-
tation values:

E[f(X)] ≡
∫

all x
f(x)p(x)dx

• ∇f(x0) takes f and x0, gives vector: not strictly a functional

• ∇f is another, vector-valued function
∇ takes a function and returns a function
∇ is an operator, not a functional

Mathematically

• Something which takes a function in and gives a function back is an operator

• Differentiation: the operator d/dx takes f and gives a new function

• Gradient: the operator ∇ takes f and gives a new function
similarly ∇·, ∇×, . . .

• Indefinite integration:
∫ x
−∞ f(u)du takes f and gives a new function

• Fourier transform: takes f and gives a new function

f̃(ω) =
∫ x=∞

x=−∞
f(x)e2iπωxdx

Bonus: Writing Our Own gradient()

• Suppose we didn’t know about the numDeriv package..

-Use the simplest possible method: change x by some amount, find the difference in f, take the slope
method="simple" option in numDeriv::grad

• Start with pseudo-code

gradient <- function(f,x,deriv.steps) {
# not real code
evaluate the function at x and at x+deriv.steps
take slopes to get partial derivatives
return the vector of partial derivatives

}

Bonus Example: gradient()

A naive implementation would use a for loop
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gradient <- function(f,x,deriv.steps,...) {
p <- length(x)
stopifnot(length(deriv.steps)==p)
f.old <- f(x,...)
gradient <- vector(length=p)
for (coordinate in 1:p) {
x.new <- x
x.new[coordinate] <- x.new[coordinate]+deriv.steps[coordinate]
f.new <- f(x.new,...)
gradient[coordinate] <- (f.new - f.old)/deriv.steps[coordinate]
}
return(gradient)

}

Works, but it’s so repetitive!

Bonus Example: gradient()

Better: use matrix manipulation and apply

gradient <- function(f,x,deriv.steps,...) {
p <- length(x)
stopifnot(length(deriv.steps)==p)
x.new <- matrix(rep(x,times=p),nrow=p) + diag(deriv.steps,nrow=p)
f.new <- apply(x.new,2,f,...)
gradient <- (f.new - f(x,...))/deriv.steps
return(gradient)

}

(clearer, and half as long)

• Presumes that f takes a vector and returns a single number

• Any extra arguments to gradient will get passed to f

• Check: Does this work when f is a function of a single number?

Bonus Example: gradient()

• Acts badly if f is only defined on a limited domain and we ask for the gradient somewhere near a
boundary

• Forces the user to choose deriv.steps
• Uses the same deriv.steps everywhere, imagine f(x) = x2 sin x

. . . and so on through much of a first course in numerical analysis (or at least sec. 5.7 of Numerical Recipes)
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