
Lecture 16: Functions as Objects
36-350

20 October 2014

Previously. . .

• Writing our own functions
• Dividng labor with multiple functions
• Refactoring to create higher-level operations
• Using apply, sapply, etc., to avoid iteration

Agenda

• Functions are objects, and can be arguments to other functions
• Functions are objects, and can be returned by other functions
• Example: surface

Reading: Sections 7.5, 7.11 and 7.13 of Matloff

Optional Recommended Reading: Chapter 3 of Chambers

Functions as Objects

• In R, functions are objects, just like everything else

• This means that they can be passed to functions as arguments
and returned by functions as outputs as well

Functions of Functions: Computationally

• We often want to do very similar things to many different functions

• The procedure is the same, only the function we’re working with changes

• ∴ Write one function to do the job, and pass the function as an argument

• Because R treats a function like any other object, we can do this simply: invoke the function by its
argument name in the body

• We have already seen examples

R Functions That Take Functions as Arguments

• apply(), sapply(), etc.: Take this function and use it on all of these objects
• nlm(): Take this function and try to make it small, starting from here
• ks.test(): Compare these data to this cumulative distribution function
• curve(): Evaluate this function over that range, and plot the results

1

Some R Syntax Facts About Functions

• Typing a function’s name, without parentheses, in the terminal gives you its source code:

sample

function (x, size, replace = FALSE, prob = NULL)
{
if (length(x) == 1L && is.numeric(x) && x >= 1) {
if (missing(size))
size <- x
sample.int(x, size, replace, prob)
}
else {
if (missing(size))
size <- length(x)
x[sample.int(length(x), size, replace, prob)]
}
}
<bytecode: 0x10698da98>
<environment: namespace:base>

Some R Syntax Facts About Functions

• Functions are their own class in R:

class(sin)

[1] "function"

class(sample)

[1] "function"

resample <- function(x) { sample(x, size=length(x), replace=TRUE) }
class(resample)

[1] "function"

Some R Syntax Facts About Functions

• Functions can be put into lists or even arrays
• A call to function returns a function object

– body executed; access with body(foo)
– arguments required: access with formals(foo)

gives argument list of foo: names are argument names, values are expressions for defaults (if any)
– parent environment: access with environment(foo)

2

Some R Syntax Facts About Functions

• R has separate types for built-in functions and for those written in R:

typeof(resample)

[1] "closure"

typeof(sample)

[1] "closure"

typeof(sin)

[1] "builtin"

Why closure for written-in-R functions? Because expressions are “closed” by referring to the parent
environment

There’s also a 2nd class of built-in functions called primitive

Anonymous Functions

• function() returns an object of class function
• So far we’ve assigned that object to a name
• If we don’t have an assignment, we get an anonymous function
• Usually part of some larger expression:

sapply((-2):2,function(log.ratio){exp(log.ratio)/(1+exp(log.ratio))})

[1] 0.1192 0.2689 0.5000 0.7311 0.8808

Anonymous Functions

• Often handy when connecting other pieces of code
– especially in things like apply and sapply

• Won’t cluttering the workspace
• Can’t be examined or re-used later

Example: grad()

• Problems in stats. come down to optimization
So do lots of problems in econ., physics, CS, bio, . . .

• Lots of optimization problems require the gradient of the objective function

• Gradient of f at x:

∇f(x) =
[
∂f

∂x1

∣∣∣∣
x

. . .
∂f

∂xp

∣∣∣∣
x

]

3

Example: grad()

• We do the same thing to get the gradient of f at x no matter what f is:

find the partial derivative of f with respect to each component of x
return the vector of partial derivatives

• It makes no sense to re-write this every time we change f !

• ∴ write code to calculate the gradient of an arbitrary function

• We could write our own, but there are lots of tricky issues

– Best way to calculate partial derivative
– What if x is at the edge of the domain of f?

• Fortunately, someone has already done this

Example: grad()

From the package numDeriv

grad(func, x, ...) # Plus other arguments

• Assumes func is a function which returns a single floating-point value
• Assumes x is a vector of arguments to func

– If x is a vector and func(x) is also a vector, then it’s assumed func is vectorized and we get a
vector of derivatives

• Extra arguments in ... get passed along to func
• Other functions in the package for the Jacobian of a vector-valued function, and the matrix of 2nd

partials (Hessian)

Example: grad()

• Does it work as advertized?

require("numDeriv")

Loading required package: numDeriv

just_a_phase <- runif(n=1,min=-pi,max=pi)
all.equal(grad(func=cos,x=just_a_phase),-sin(just_a_phase))

[1] TRUE

4

phases <- runif(n=10,min=-pi,max=pi)
all.equal(grad(func=cos,x=phases),-sin(phases))

[1] TRUE

grad(func=function(x){x[1]^2+x[2]^3}, x=c(1,-1))

[1] 2 3

Note: grad is perfectly happy with func being an anonymous function!

gradient.descent()

Now we can use this as a piece of a larger machine:

gradient.descent <- function(f,x,max.iterations,step.scale,
stopping.deriv,...) {
for (iteration in 1:max.iterations) {
gradient <- grad(f,x,...)
if(all(abs(gradient) < stopping.deriv)) { break() }
x <- x - step.scale*gradient

}
fit <- list(argmin=x,final.gradient=gradient,final.value=f(x,...),
iterations=iteration)

return(fit)
}

• Works equally well whether f is mean squared error of a regression, ψ error of a regression, (negative
log) likelihood, cost of a production plan, . . .

Cautions

• Scoping f takes values for all names which aren’t its arguments from the environment where it was
defined, not the one where it is called (e.g., not from inside grad or gradient.descent)

• Debugging If f and g are both complicated, avoid debugging g(f) as a block; divide the work by writing
very simple f.dummy to debug/test g, and debug/test the real f separately

Returning Functions: A trivial example

Functions can be return values like anything else

make.noneuclidean <- function(ratio.to.diameter=pi) {
circumference <- function(d) { return(ratio.to.diameter*d) }
return(circumference)

}

5

Returning Functions: A trivial example (cont’d.)

try(circumference(10))
kings.i <- make.noneuclidean(3)
try(kings.i(10))

[1] 30

formals(kings.i)

$d

body(kings.i)

{
return(ratio.to.diameter * d)
}

environment(kings.i)

<environment: 0x100fa9178>

try(circumference(10))

A Less Trivial Example

Create a linear predictor, based on sample values of two variables

make.linear.predictor <- function(x,y) {
linear.fit <- lm(y~x)
predictor <- function(x) {
return(predict(object=linear.fit,newdata=data.frame(x=x)))
}
return(predictor)

}

The predictor function persists and works, even when the data we used to create it is gone

A Less Trivial Example

library(MASS); data(cats)
vet_predictor <- make.linear.predictor(x=cats$Bwt,y=cats$Hwt)
rm(cats) # Data set goes away
vet_predictor(3.5) # My cat's body mass in kilograms

1
13.76

6

A more mathematical example

• Instead of finding ∇f(x), find the function ∇f :

nabla <- function(f,...) {
require("numDeriv")
g <- function(x,...) { grad(func=f,x=x,...) }
return(g)

}

Exercise: Write a test case!

Example: curve()

• You learned to use curve in the first week (because you did all of the assigned reading, including section
2.3.3 of the textbook)

• A call to curve looks like this:

curve(expr, from = a, to = b, ...)

expr is some expression involving a variable called x
which is swept from the value a to the value b
... are other plot-control arguments

• curve feeds the expression a vector x and expects a numeric vector back, e.g.

curve(x^2 * sin(x))

is fine

Using curve() with our own functions

• If we have defined a function already, we can use it in curve:

psi <- function(x,c=1) {ifelse(abs(x)>c,2*c*abs(x)-c^2,x^2)}
curve(psi(x,c=10),from=-20,to=20)

Try this! Also try

curve(psi(x=10,c=x),from=-20,to=20)

and explain it to yourself

Using curve() with our own functions

• If our function doesn’t take vectors to vectors, curve becomes unhappy

7

mse <- function(y0,a,Y=gmp$pcgmp,N=gmp$pop) {
mean((Y - y0*(N^a))^2)

}

> curve(mse(a=x,y0=6611),from=0.10,to=0.15)
Error in curve(mse(a = x, y0 = 6611), from = 0.1, to = 0.15) :

'expr' did not evaluate to an object of length 'n'
In addition: Warning message:
In N^a : longer object length is not a multiple of shorter object length

How do we solve this?

Using curve() with our own functions

• Define a new, vectorized function, say with sapply:

sapply(seq(from=0.10,to=0.15,by=0.01),mse,y0=6611)

[1] 154701953 102322974 68755654 64529166 104079527 207057513

mse(6611,0.10)

[1] 154701953

mse.plottable <- function(a,...){ return(sapply(a,mse,...)) }
mse.plottable(seq(from=0.10,to=0.15,by=0.01),y0=6611)

[1] 154701953 102322974 68755654 64529166 104079527 207057513

Using curve() with our own functions

curve(mse.plottable(a=x,y0=6611),from=0.10,to=0.20,xlab="a",ylab="MSE")
curve(mse.plottable(a=x,y0=5100),add=TRUE,col="blue")

8

0.10 0.12 0.14 0.16 0.18 0.20

0.
0e

+
00

1.
0e

+
09

2.
0e

+
09

3.
0e

+
09

a

M
S

E

Using curve() with our own functions

• Alternate strategy: Vectorize() returns a new, vectorized function

mse.vec <- Vectorize(mse, vectorize.args=c("y0","a"))
mse.vec(a=seq(from=0.10,to=0.15,by=0.01),y0=6611)

[1] 154701953 102322974 68755654 64529166 104079527 207057513

mse.vec(a=1/8,y0=c(5000,6000,7000))

[1] 134617132 74693733 63732256

Using curve() with our own functions

curve(mse.vec(a=x,y0=6611),from=0.10,to=0.20,xlab="a",ylab="MSE")
curve(mse.vec(a=x,y0=5100),add=TRUE,col="blue")

9

0.10 0.12 0.14 0.16 0.18 0.20

0.
0e

+
00

1.
0e

+
09

2.
0e

+
09

3.
0e

+
09

a

M
S

E

Example: surface()

• curve takes an expression and, as a side-effect, plots a 1-D curve by sweeping over x

• Suppose we want something like that but sweeping over two variables

• Built-in plotting function contour:

contour(x,y,z, [[other stuff]])

x and y are vectors of coordinates, z is a matrix of the corresponding shape
(see help(contour) for graphical options)

• Strategy: surface should make x and y sequences, evaluate the expression at each combination to get
z, and then call contour

First attempt at surface()

• Only works with vector-to-number functions:

surface.1 <- function(f,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
plot.grid <- expand.grid(x=x.seq,y=y.seq)
z.values <- apply(plot.grid,1,f)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix))

}

10

First attempt at surface()

surface.1(function(p){return(sum(p^3))},from.x=-1,from.y=-1)

 −1.5 −1

 −0.5

 0

 0.5

 1 1.5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Expressions and Evaluation

• curve doesn’t require us to write a function every time — what’s it’s trick?

• Expressions are just another class of R object, so they can be created and manipulated

• One manipulation is evaluation

eval(expr,envir)

evaluates the expression expr in the environment envir, which can be a data frame or even just a list

• When we type something like xˆ2+yˆ2 as an argument to surface.1, R tries to evaluate it prematurely

• substitute returns the unevaluted expression

• curve uses first substitute(expr) and then eval(expr,envir), having made the right envir

Second attempt at surface()

surface.2 <- function(expr,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
plot.grid <- expand.grid(x=x.seq,y=y.seq)

11

unevaluated.expression <- substitute(expr)
z.values <- eval(unevaluated.expression,envir=plot.grid)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix))

}

Second attempt at surface()

surface.2(abs(x^3)+abs(y^3),from.x=-1,from.y=-1)

 0.2

 0.4

 0.6

 0.8

 1 1.2

 1.2

 1.2

 1.2

 1.4

 1.4

 1.4

 1.4

 1.6

 1.6

 1.6

 1.6

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Evaluating at Combinations

• Evaluating a function at every combination of two arguments is a really common task

• There is a function to do it for us: outer

Third attempt at surface()

surface.3 <- function(expr,from.x=0,to.x=1,from.y=0,to.y=1,n.x=101,
n.y=101,...) {
x.seq <- seq(from=from.x,to=to.x,length.out=n.x)
y.seq <- seq(from=from.y,to=to.y,length.out=n.y)
unevaluated.expression <- substitute(expr)
z <- function(x,y) {

return(eval(unevaluated.expression,envir=list(x=x,y=y)))
}

12

z.values <- outer(X=x.seq,Y=y.seq,FUN=z)
z.matrix <- matrix(z.values,nrow=n.x)
contour(x=x.seq,y=y.seq,z=z.matrix,...)
invisible(list(x=x.seq,y=y.seq,z=z.matrix, func=z))

}

Third attempt at surface()

surface.3(x^4-y^4,from.x=-1,from.y=-1)

 −0.8

 −0.8

 −0.6

 −0.6

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0.2 0.2

 0.4 0.4

 0
.6

 0.6

 0.8 0
.8

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

surface()

surface.3(mse.vec(a=x,y0=y),from.x=0.10,to.x=0.15,
from.y=6e3,to.y=7e3,nlevels=20)

13

0.10 0.11 0.12 0.13 0.14 0.15

60
00

64
00

68
00

Summary

• In R, functions are objects, and can be arguments to other functions

– Use this to do the same thing to many different functions
– Separates writing the high-level operations and the first-order functions
– Use sapply (etc.), wrappers, anonymous functions as adapters

• Functions can also be returned by other functions

– Variables other than the arguments to the function are fixed by the environment of creation
– Manipulating expressions lets us flexibly create functions

Functions of Functions: Mathematically

• Maximum, and location of the maximum: takes f , gives number

max
x

f(x) , argmaxxf(x)

• Derivative of f at x0: takes a function and a point, gives a number

df

dx
(x0) ≡ lim

h→0

f(x0 + h)− f(x0)
h

• Definite integral of f over [a, b]: takes a function and two points, gives a number∫ b

a

f(x)dx ≡ lim
n→∞

n−1∑
i=0

(
b− a
n

)
f

(
a+ i

b− a
n

)

14

Mathematical view cont’d.

• Functions of functions which return numbers sometimes are sometimes called functionals, e.g., expec-
tation values:

E[f(X)] ≡
∫

all x
f(x)p(x)dx

• ∇f(x0) takes f and x0, gives vector: not strictly a functional

• ∇f is another, vector-valued function
∇ takes a function and returns a function
∇ is an operator, not a functional

Mathematically

• Something which takes a function in and gives a function back is an operator

• Differentiation: the operator d/dx takes f and gives a new function

• Gradient: the operator ∇ takes f and gives a new function
similarly ∇·, ∇×, . . .

• Indefinite integration:
∫ x
−∞ f(u)du takes f and gives a new function

• Fourier transform: takes f and gives a new function

f̃(ω) =
∫ x=∞

x=−∞
f(x)e2iπωxdx

Bonus: Writing Our Own gradient()

• Suppose we didn’t know about the numDeriv package..

-Use the simplest possible method: change x by some amount, find the difference in f, take the slope
method="simple" option in numDeriv::grad

• Start with pseudo-code

gradient <- function(f,x,deriv.steps) {
not real code
evaluate the function at x and at x+deriv.steps
take slopes to get partial derivatives
return the vector of partial derivatives

}

Bonus Example: gradient()

A naive implementation would use a for loop

15

gradient <- function(f,x,deriv.steps,...) {
p <- length(x)
stopifnot(length(deriv.steps)==p)
f.old <- f(x,...)
gradient <- vector(length=p)
for (coordinate in 1:p) {
x.new <- x
x.new[coordinate] <- x.new[coordinate]+deriv.steps[coordinate]
f.new <- f(x.new,...)
gradient[coordinate] <- (f.new - f.old)/deriv.steps[coordinate]
}
return(gradient)

}

Works, but it’s so repetitive!

Bonus Example: gradient()

Better: use matrix manipulation and apply

gradient <- function(f,x,deriv.steps,...) {
p <- length(x)
stopifnot(length(deriv.steps)==p)
x.new <- matrix(rep(x,times=p),nrow=p) + diag(deriv.steps,nrow=p)
f.new <- apply(x.new,2,f,...)
gradient <- (f.new - f(x,...))/deriv.steps
return(gradient)

}

(clearer, and half as long)

• Presumes that f takes a vector and returns a single number

• Any extra arguments to gradient will get passed to f

• Check: Does this work when f is a function of a single number?

Bonus Example: gradient()

• Acts badly if f is only defined on a limited domain and we ask for the gradient somewhere near a
boundary

• Forces the user to choose deriv.steps
• Uses the same deriv.steps everywhere, imagine f(x) = x2 sin x

. . . and so on through much of a first course in numerical analysis (or at least sec. 5.7 of Numerical Recipes)

16

	Previously…
	Agenda
	Functions as Objects
	Functions of Functions: Computationally
	R Functions That Take Functions as Arguments
	Some R Syntax Facts About Functions
	Some R Syntax Facts About Functions
	Some R Syntax Facts About Functions
	Some R Syntax Facts About Functions
	Anonymous Functions
	Anonymous Functions
	Example: grad()
	Example: grad()
	Example: grad()
	Example: grad()
	gradient.descent()
	Cautions
	Returning Functions: A trivial example
	Returning Functions: A trivial example (cont'd.)
	A Less Trivial Example
	A Less Trivial Example
	A more mathematical example
	Example: curve()
	Using curve() with our own functions
	Using curve() with our own functions
	Using curve() with our own functions
	Using curve() with our own functions
	Using curve() with our own functions
	Using curve() with our own functions
	Example: surface()
	First attempt at surface()
	First attempt at surface()
	Expressions and Evaluation
	Second attempt at surface()
	Second attempt at surface()
	Evaluating at Combinations
	Third attempt at surface()
	Third attempt at surface()
	surface()
	Summary
	Functions of Functions: Mathematically
	Mathematical view cont'd.
	Mathematically
	Bonus: Writing Our Own gradient()
	Bonus Example: gradient()
	Bonus Example: gradient()
	Bonus Example: gradient()

