
Lecture 17: Numerical Optimization
36-350

22 October 2014

Agenda

• Basics of optimization
• Gradient descent
• Newton’s method
• Curve-fitting
• R: optim, nls

Reading: Recipes 13.1 and 13.2 in The R Cookbook

Optional reading: 1.1, 2.1 and 2.2 in Red Plenty

Examples of Optimization Problems

• Minimize mean-squared error of regression surface (Gauss, c. 1800)
• Maximize likelihood of distribution (Fisher, c. 1918)
• Maximize output of plywood from given supplies and factories (Kantorovich, 1939)
• Maximize output of tanks from given supplies and factories; minimize number of bombing runs to

destroy factory (c. 1939–1945)
• Maximize return of portfolio for given volatility (Markowitz, 1950s)
• Minimize cost of airline flight schedule (Kantorovich. . .)
• Maximize reproductive fitness of an organism (Maynard Smith)

Optimization Problems

Given an objective function f : D 7→ R, find

θ∗ = argminθf(θ)

Basics: maximizing f is minimizing −f :

argmaxθf(θ) = argminθ−f(θ)

If h is strictly increasing (e.g., log), then

argminθf(θ) = argminθh(f(θ))

1

Considerations

• Approximation: How close can we get to θ∗, and/or f(θ∗)?

• Time complexity: How many computer steps does that take?
Varies with precision of approximation, niceness of f , size of D, size of data, method. . .

• Most optimization algorithms use successive approximation, so distinguish number of iterations
from cost of each iteration

You remember calculus, right?

Suppose x is one dimensional and f is smooth. If x∗ is an interior minimum / maximum / extremum point

df

dx

∣∣∣∣
x=x∗

= 0

If x∗ a minimum,
d2f

dx2

∣∣∣∣
x=x∗

> 0

You remember calculus, right?

This all carries over to multiple dimensions:

At an interior extremum,
∇f(θ∗) = 0

At an interior minimum,
∇2f(θ∗) ≥ 0

meaning for any vector v,
vT∇2f(θ∗)v ≥ 0

∇2f = the Hessian, H

θ might just be a local minimum

Gradients and Changes to f

f ′(x0) = df

dx

∣∣∣∣
x=x0

= lim
x→x0

f(x)− f(x0)
x− x0

f(x) ≈ f(x0) + (x− x0)f ′(x0)

Locally, the function looks linear; to minimize a linear function, move down the slope

Multivariate version:
f(θ) ≈ f(θ0) + (θ − θ0) · ∇f(θ0)

∇f(θ0) points in the direction of fastest ascent at θ0

2

Gradient Descent

1. Start with initial guess for θ, step-size η
2. While ((not too tired) and (making adequate progress))

• Find gradient ∇f(θ)
• Set θ ← θ − η∇f(θ)

3. Return final θ as approximate θ∗

Variations: adaptively adjust η to make sure of improvement or search along the gradient direction for
minimum

Pros and Cons of Gradient Descent

Pro:

• Moves in direction of greatest immediate improvement
• If η is small enough, gets to a local minimum eventually, and then stops

Cons:

• “small enough” η can be really, really small
• Slowness or zig-zagging if components of ∇f are very different sizes

How much work do we need?

Scaling

Big-O notation:

h(x) = O(g(x))

means

lim
x→∞

h(x)
g(x) = c

for some c 6= 0

e.g., x2 − 5000x+ 123456778 = O(x2)

e.g., ex/(1 + ex) = O(1)

Useful to look at over-all scaling, hiding details

Also done when the limit is x→ 0

3

How Much Work is Gradient Descent?

Pro:

• For nice f , f(θ) ≤ f(θ∗) + ε in O(ε−2) iterations

– For very nice f , only O(log ε−1) iterations

• To get ∇f(θ), take p derivatives, ∴ each iteration costs O(p)

Con:

• Taking derivatives can slow down as data grows — each iteration might really be O(np)

Taylor Series

What if we do a quadratic approximation to f?

f(x) ≈ f(x0) + (x− x0)f ′(x0) + 1
2(x− x0)2f ′′(x0)

Special cases of general idea of Taylor approximation

Simplifies if x0 is a minimum since then f ′(x0) = 0:

f(x) ≈ f(x0) + 1
2(x− x0)2f ′′(x0)

Near a minimum, smooth functions look like parabolas

Carries over to the multivariate case:

f(θ) ≈ f(θ0) + (θ − θ0) · ∇f(θ0) + 1
2(θ − θ0)TH(θ0)(θ − θ0)

Minimizing a Quadratic

If we know
f(x) = ax2 + bx+ c

we minimize exactly:

2ax∗ + b = 0

x∗ = −b
2a

If
f(x) = 1

2a(x− x0)2 + b(x− x0) + c

then
x∗ = x0 − a−1b

4

Newton’s Method

Taylor-expand for the value at the minimum θ∗

f(θ∗) ≈ f(θ) + (θ∗ − θ)∇f(θ) + 1
2(θ∗ − θ)TH(θ)(θ∗ − θ)

Take gradient, set to zero, solve for θ∗:

0 = ∇f(θ) + H(θ)(θ∗ − θ)
θ∗ = θ − (H(θ))−1∇f(θ)

Works exactly if f is quadratic
and H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗, when it will be nearly true

Newton’s Method: The Algorithm

1. Start with guess for θ
2. While ((not too tired) and (making adequate progress))

• Find gradient ∇f(θ) and Hessian H(θ)
• Set θ ← θ −H(θ)−1∇f(θ)

3. Return final θ as approximation to θ∗

Like gradient descent, but with inverse Hessian giving the step-size

“This is about how far you can go with that gradient”

Advantages and Disadvantages of Newton’s Method

Pros:

• Step-sizes chosen adaptively through 2nd derivatives, much harder to get zig-zagging, over-shooting,
etc.

• Also guaranteed to need O(ε−2) steps to get within ε of optimum
• Only O(log log ε−1) for very nice functions
• Typically many fewer iterations than gradient descent

Advantages and Disadvantages of Newton’s Method

Cons:

• Hopeless if H doesn’t exist or isn’t invertible
• Need to take O(p2) second derivatives plus p first derivatives
• Need to solve Hθnew = Hθold −∇f(θold) for θnew

– inverting H is O(p3), but cleverness gives O(p2) for solving for θnew

5

Getting Around the Hessian

Want to use the Hessian to improve convergence

Don’t want to have to keep computing the Hessian at each step

Approaches:

• Use knowledge of the system to get some approximation to the Hessian, use that instead of taking
derivatives (“Fisher scoring”)

• Use only diagonal entries (p unmixed 2nd derivatives)
• Use H(θ) at initial guess, hope H changes very slowly with θ
• Re-compute H(θ) every k steps, k > 1
• Fast, approximate updates to the Hessian at each step (BFGS)

Other Methods

• Lots!
• See bonus slides at end for for “Nedler-Mead”, a.k.a. “the simplex method”, which doesn’t need any

derivatives
• See bonus slides for the meta-method “coordinate descent”

Curve-Fitting by Optimizing

We have data (x1, y1), (x2, y2), . . . (xn, yn)

We also have possible curves, r(x; θ)

e.g., r(x) = x · θ

e.g., r(x) = θ1x
θ2

e.g., r(x) =
∑q
j=1 θjbj(x) for fixed “basis” functions bj

Curve-Fitting by Optimizing

Least-squares curve fitting:

θ̂ = argminθ
1
n

n∑
i=1

(yi − r(xi; θ))2

“Robust” curve fitting:

θ̂ = argminθ
1
n

n∑
i=1

ψ(yi − r(xi; θ))

6

Optimization in R: optim()

optim(par, fn, gr, method, control, hessian)

• fn: function to be minimized; mandatory
• par: initial parameter guess; mandatory
• gr: gradient function; only needed for some methods
• method: defaults to a gradient-free method (“Nedler-Mead”), could be BFGS (Newton-ish)
• control: optional list of control settings

– (maximum iterations, scaling, tolerance for convergence, etc.)

• hessian: should the final Hessian be returned? default FALSE

Return contains the location ($par) and the value ($val) of the optimum, diagnostics, possibly $hessian

Optimization in R: optim()

gmp <- read.table("gmp.dat")
gmp$pop <- gmp$gmp/gmp$pcgmp
library(numDeriv)
mse <- function(theta) { mean((gmp$pcgmp - theta[1]*gmp$pop^theta[2])^2) }
grad.mse <- function(theta) { grad(func=mse,x=theta) }
theta0=c(5000,0.15)
fit1 <- optim(theta0,mse,grad.mse,method="BFGS",hessian=TRUE)

fit1: Newton-ish BFGS method

fit1[1:3]

$par
[1] 6493.2564 0.1277
##
$value
[1] 61853983
##
$counts
function gradient
63 11

fit1: Newton-ish BFGS method

fit1[4:6]

7

$convergence
[1] 0
##
$message
NULL
##
$hessian
[,1] [,2]
[1,] 52.5 4.422e+06
[2,] 4422070.4 3.757e+11

nls

optim is a general-purpose optimizer

So is nlm — try them both if one doesn’t work

nls is for nonlinear least squares

nls

nls(formula, data, start, control, [[many other options]])

• formula: Mathematical expression with response variable, predictor variable(s), and unknown parame-
ter(s)

• data: Data frame with variable names matching formula
• start: Guess at parameters (optional)
• control: Like with optim (optional)

Returns an nls object, with fitted values, prediction methods, etc.

The default optimization is a version of Newton’s method

fit2: Fitting the Same Model with nls()

fit2 <- nls(pcgmp~y0*pop^a,data=gmp,start=list(y0=5000,a=0.1))
summary(fit2)

##
Formula: pcgmp ~ y0 * pop^a
##
Parameters:
Estimate Std. Error t value Pr(>|t|)
y0 6.49e+03 8.57e+02 7.58 2.9e-13 ***
a 1.28e-01 1.01e-02 12.61 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

8

Residual standard error: 7890 on 364 degrees of freedom
##
Number of iterations to convergence: 5
Achieved convergence tolerance: 1.75e-07

fit2: Fitting the Same Model with nls()

plot(pcgmp~pop,data=gmp)
pop.order <- order(gmp$pop)
lines(gmp$pop[pop.order],fitted(fit2)[pop.order])
curve(fit1$par[1]*x^fit1$par[2],add=TRUE,lty="dashed",col="blue")

0.0e+00 5.0e+06 1.0e+07 1.5e+07

20
00

0
40

00
0

60
00

0
80

00
0

pop

pc
gm

p

Summary

1. Trade-offs: complexity of iteration vs. number of iterations vs. precision of approximation

• Gradient descent: less complex iterations, more guarantees, less adaptive
• Newton: more complex iterations, but few of them for good functions, more adaptive, less robust

2. Start with pre-built code like optim or nls, implement your own as needed

Nelder-Mead, a.k.a. the Simplex Method

Try to cage θ∗ with a simplex of p+ 1 points

Order the trial points, f(θ1) ≤ f(θ2) . . . ≤ f(θp+1)

9

θp+1 is the worst guess — try to improve it

Center of the not-worst = θ0 = 1
n

∑n
i=1 θi

Nelder-Mead, a.k.a. the Simplex Method

Try to improve the worst guess θp+1

1. Reflection: Try θ0 − (θp+1 − θ0), across the center from θp+1

• if it’s better than θp but not than θ1, replace the old θp+1 with it
• Expansion: if the reflected point is the new best, try θ0 − 2(θp+1 − θ0); replace the old θp+1 with

the better of the reflected and the expanded point

2. Contraction: If the reflected point is worse that θp, try θ0 + θp+1−θ0
2 ; if the contracted value is better,

replace θp+1 with it
3. Reduction: If all else fails, θi ← θ1+θi

2
4. Go back to (1) until we stop improving or run out of time

Making Sense of Nedler-Mead

The Moves:

• Reflection: try the opposite of the worst point
• Expansion: if that really helps, try it some more
• Contraction: see if we overshot when trying the opposite
• Reduction: if all else fails, try making each point more like the best point

Making Sense of Nedler-Mead

Pros:

• Each iteration ≤ 4 values of f , plus sorting
(and sorting is at most O(p log p), usually much better)

• No derivatives used, can even work for dis-continuous f

Con: - Can need many more iterations than gradient methods

Coordinate Descent

Gradient descent, Newton’s method, simplex, etc., adjust all coordinates of θ at once — gets harder as the
number of dimensions p grows

Coordinate descent: never do more than 1D optimization

• Start with initial guess θ
• While ((not too tired) and (making adequate progress))

10

– For i ∈ (1 : p)
∗ do 1D optimization over ith coordinate of θ, holding the others fixed
∗ Update ith coordinate to this optimal value

• Return final value of θ

Coordinate Descent

Cons:

• Needs a good 1D optimizer
• Can bog down for very tricky functions, especially with lots of interactions among variables

Pros:

• Can be extremely fast and simple

11

	Agenda
	Examples of Optimization Problems
	Optimization Problems
	Considerations
	You remember calculus, right?
	You remember calculus, right?
	Gradients and Changes to f
	Gradient Descent
	Pros and Cons of Gradient Descent
	Scaling
	How Much Work is Gradient Descent?
	Taylor Series
	Minimizing a Quadratic
	Newton's Method
	Newton's Method: The Algorithm
	Advantages and Disadvantages of Newton's Method
	Advantages and Disadvantages of Newton's Method
	Getting Around the Hessian
	Other Methods
	Curve-Fitting by Optimizing
	Curve-Fitting by Optimizing
	Optimization in R: optim()
	Optimization in R: optim()
	fit1: Newton-ish BFGS method
	fit1: Newton-ish BFGS method
	nls
	nls
	fit2: Fitting the Same Model with nls()
	fit2: Fitting the Same Model with nls()
	Summary
	Nelder-Mead, a.k.a. the Simplex Method
	Nelder-Mead, a.k.a. the Simplex Method
	Making Sense of Nedler-Mead
	Making Sense of Nedler-Mead
	Coordinate Descent
	Coordinate Descent

