
The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Statistical Computing (36-350)
Lecture 22: Split/Apply/Combine, encore

36-350
Massive thanks to Vince Vu

10 November 2014

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Agenda

High-level overview of split/apply/combine
Understanding how we split
Tailoring the applied function to the split

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Splitting and Aggregation in Data Analysis

Large data sets are usually highly structured
Structure lets us group data in many different ways
Sometimes we focus on individual pieces of data
Often we aggregate information within groups, and compare across
them

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

An Easy Warm-Up

Row (column) means of a matrix
Divide the matrix into rows (columns)
Compute the mean of each row (column)
Combine the results into a vector

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Row Means

matrix
(array, 2 dimensional)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Row Means

(vector, 1 dimensional)

(vector, 1 dimensional)

(vector, 1 dimensional)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Row Means

mean()

mean()

mean()

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Row Means

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Row Means

vector (1 dimensional)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Another Example

Data organized into 48 continental states
Fit a different model for each of 4 different geographic regions

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Splitting by Region

data.frame
36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Splitting by Region

data.frames

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Splitting by Region

lm()

lm()

lm()

lm()
36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Splitting by Region

lm objects
36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

Combine into a list

list of lm objects
36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

The Basic Pattern

split apply combine

f()

f()

f()

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

An Easy Warm-Up
A Slightly Less Easy Warm-Up
The Abstract Pattern

The Basic Pattern (cont’d.)

Split divide the problem into smaller pieces
Apply Work on each piece independently

Combine Recombine the pieces

A common pattern for both programming and data analysis, many
implementations
Python: map(), filter(), reduce()

Google mapReduce

R: split, *apply, aggregate,. . .

R: plyr package

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

Input Data Structure

Each type (array, list, data frame) has its own ways of being split
Will mostly go over how plyr does it

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

Inputs: d-dimensional Arrays

d dimensions that can be subscripted independently
∴ can be split 2d − 1 different ways
2D arrays can be split 3 ways: rows, columns, cells

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

Splitting 3D Arrays

23− 1= 7 ways to split

3 dimensional array

Seven ways to split

Journal of Statistical Software 7

2
1

1

2 1,2

Figure 1: The three ways to split up a 2d matrix, labelled above by the dimensions that they
slice. Original matrix shown at top left, with dimensions labelled. A single piece under each
splitting scheme is colored blue.

3

2
1

1 2 3

1,2 1,3 2,3
1,2,3

Figure 2: The seven ways to split up a 3d array, labelled above by the dimensions that they
slice up. Original array shown at top left, with dimensions labelled. Blue indicates a single
piece of the output.

m*ply() takes a matrix, list-array, or data frame, splits it up by rows and calls the processing
function supplying each piece as its parameters. Figure 3 shows how you might use this to
draw random numbers from normal distributions with varying parameters.

Input: Data frame (d*ply)

When operating on a data frame, you usually want to split it up into groups based on com-
binations of variables in the data set. For d*ply you specify which variables (or functions
of variables) to use. These variables are specified in a special way to highlight that they are

figure from Wickham (2011)

from Wickham (2011)

36-350 Lecture 22

http://www.jstatsoft.org/v40/i01/

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

a*ply()

y <- a*ply(.data, .margins, .fun, ...)

.data an array
.margins subscripts which the function gets applied over

.fun the function to be applied
... additional arguments to function

Returns a * (a = array, d = data frame, l = list, _ = nothing)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

Why the Funny Argument Names?

Why .data or .margins instead of data or margins?
To avoid collisions with the extra arguments to the function .fun

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

apply vs. aaply

Base R: apply(X,1,FUN,...) (rows) or apply(X,2,FUN,...)
(columns)
plyr: aaply(.data,1,.fun,...), aaply(.data,2,.fun,...)
Pretty much equivalent, usually little point to plyr if that’s all you’re
doing

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

Input: Lists — l*ply()

Lists can only be split one way

y <- l*ply(.data, .fun, ...)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

Input: Data Frames

Can be split into groups according to the values of variables in the
columns
Groups need not be of equal size
e.g., split census tracts by state
e.g., split census tracts by urban/suburban/rural
e.g., split census tracts by state and type

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

d*ply()

y <- d*ply(.data, .variables, .fun, ...)

.data a data frame
.variables variables used to define groups

.fun the function to be applied
... additional arguments to the function

Returns array, data frame, list, nothing

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

The Splitting Variables

.variables can be of two forms

.(var1, var2) or
c(’var1’,’var2’)
searches .data for those variables first, then the parent environment
Looking in the parent environment can lead to some odd type-conversion issues

Advice: make the variables you want to split on part of the data frame

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

The Splitting Variables

.variables=.(var1) splits off a new dataframe for each unique
value of var1
.variables=.(var1,var2) splits on each unique combination of
values of var2
What if e.g. you want to compare cases where var1 >= var2 with
those where var1 < var2?

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

The Splitting Variables

The splitting variables are still columns of the smaller dataframes
that the function gets applied to
e.g., if you split on Country in the data from lab, each resulting
dataframe still has a Country column

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Splitting Arrays
Splitting Lists
Splitting Dataframes

Data Frames Have Two Natures

Data frame is a list of vectors
∴ Can be split into separate columns
∴ Can be used with l*ply()
Data frame responds to array-like indexing
∴ Can be split like a 2D array
∴ Can be used with a*ply()

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

The Processing Function
The Output Data Structure

Processing Function

Function that is applied to each piece
Should:

Take a piece as its first argument
Return same type as eventual output (but there are exceptions)
Sometimes cause side effects (plot, save, ...)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

The Processing Function
The Output Data Structure

Things to Remember About the Processing Function

Its input should be a whole piece of the original data
Row/column/slab of an array
A smaller dataframe from the original dataframe

Not all of that piece may be relevant; do any selection inside
the function
You can write and debug that function by manually splitting
off an example piece, and doing your processing on it first

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

The Processing Function
The Output Data Structure

Output Data Structure

Defines how results are combined and labeled
Array (a)
List (l)
Data frame (d)
Discarded (_) — for side effects, e.g., plotting

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

The Processing Function
The Output Data Structure

Output Arrays

Output organized in the expected way.
Processing function should return an object of same type each time
it is called.
If processing function returns a list, then output will be a list-array
(list with dimensions)
Avoid this

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

The Processing Function
The Output Data Structure

Output Data Frames

Output will contain results with additional label columns indicating
which group the result corresponds to.

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Applying the pattern to your problem

check data type of
input data structure
output data structure

Use a built-in function, or write a processing function and test
it on one piece
Call appropriate **ply()

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Iteration Considered Unhelpful

Could always do the same thing with for loops, but those are
verbose — lots of “how”, obscures “what”
painful/error-prone book-keeping (indices, placeholders, . . .)
clumsy — hard to parallelize

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Examples

Regularly sampled spatial data

measures <- array(STUFF, dim = c(10, 10, 100))

10× 10 grid of locations
100 measurements at each location
Problem: Standardize measurements at each location
Standardize one location:

z <- scale(measures[1, 1,])

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Iteration

y <- array(dim = dim(measures))
for(i in 1:dim(measures)[1]) {

for(j in 1:dim(measures)[2]) {
y[i, j,] <- scale(measures[i, j,])

}
}

Base R:

y <- apply(measures, 1:2, scale)

plyr

y <- aaply(measures, 1:2, scale)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Iteration

y <- array(dim = dim(measures))
for(i in 1:dim(measures)[1]) {

for(j in 1:dim(measures)[2]) {
y[i, j,] <- scale(measures[i, j,])

}
}

Base R:

y <- apply(measures, 1:2, scale)

plyr

y <- aaply(measures, 1:2, scale)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Iteration

y <- array(dim = dim(measures))
for(i in 1:dim(measures)[1]) {

for(j in 1:dim(measures)[2]) {
y[i, j,] <- scale(measures[i, j,])

}
}

Base R:

y <- apply(measures, 1:2, scale)

plyr

y <- aaply(measures, 1:2, scale)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Iteration

y <- array(dim = dim(measures))
for(i in 1:dim(measures)[1]) {

for(j in 1:dim(measures)[2]) {
y[i, j,] <- scale(measures[i, j,])

}
}

Base R:

y <- apply(measures, 1:2, scale)

plyr

y <- aaply(measures, 1:2, scale)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Iteration

y <- array(dim = dim(measures))
for(i in 1:dim(measures)[1]) {

for(j in 1:dim(measures)[2]) {
y[i, j,] <- scale(measures[i, j,])

}
}

Base R:

y <- apply(measures, 1:2, scale)

plyr

y <- aaply(measures, 1:2, scale)

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Ragged spatial data

measures <- data.frame(loc.x = FOO,
loc.y = BAR,
value = BAZ)

Irregularly sampled (x,y) locations
Different number of measurements at each location
Standardize measurements at each location

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Handle one location:

df <- subset(measures, loc.x = 1 & loc.y = 1)
z <- scale(df$value)

Iteration

Left as an exercise for the student

Base R

Left as an exercise

plyr

y <- ddply(measures, .(loc.x, loc.y), function(df) { return(scale(df$value)) })

Only want to scale one column of the split-off data frame

Used an anonymous function; could also define a function previously

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Handle one location:

df <- subset(measures, loc.x = 1 & loc.y = 1)
z <- scale(df$value)

Iteration

Left as an exercise for the student

Base R

Left as an exercise

plyr

y <- ddply(measures, .(loc.x, loc.y), function(df) { return(scale(df$value)) })

Only want to scale one column of the split-off data frame

Used an anonymous function; could also define a function previously

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Handle one location:

df <- subset(measures, loc.x = 1 & loc.y = 1)
z <- scale(df$value)

Iteration

Left as an exercise for the student

Base R

Left as an exercise

plyr

y <- ddply(measures, .(loc.x, loc.y), function(df) { return(scale(df$value)) })

Only want to scale one column of the split-off data frame

Used an anonymous function; could also define a function previously

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Handle one location:

df <- subset(measures, loc.x = 1 & loc.y = 1)
z <- scale(df$value)

Iteration

Left as an exercise for the student

Base R

Left as an exercise

plyr

y <- ddply(measures, .(loc.x, loc.y), function(df) { return(scale(df$value)) })

Only want to scale one column of the split-off data frame

Used an anonymous function; could also define a function previously

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Handle one location:

df <- subset(measures, loc.x = 1 & loc.y = 1)
z <- scale(df$value)

Iteration

Left as an exercise for the student

Base R

Left as an exercise

plyr

y <- ddply(measures, .(loc.x, loc.y), function(df) { return(scale(df$value)) })

Only want to scale one column of the split-off data frame

Used an anonymous function; could also define a function previously

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Handle one location:

df <- subset(measures, loc.x = 1 & loc.y = 1)
z <- scale(df$value)

Iteration

Left as an exercise for the student

Base R

Left as an exercise

plyr

y <- ddply(measures, .(loc.x, loc.y), function(df) { return(scale(df$value)) })

Only want to scale one column of the split-off data frame

Used an anonymous function; could also define a function previously

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Handle one location:

df <- subset(measures, loc.x = 1 & loc.y = 1)
z <- scale(df$value)

Iteration

Left as an exercise for the student

Base R

Left as an exercise

plyr

y <- ddply(measures, .(loc.x, loc.y), function(df) { return(scale(df$value)) })

Only want to scale one column of the split-off data frame

Used an anonymous function; could also define a function previously

36-350 Lecture 22

The View from 30,000 Feet
How Can We Split?

Processing After the Split
Applying Split/Apply/Combine

Don’t Force It

Don’t use split/apply/combine as a fancy way of writing for

l_ply(1:708, function(i) {
several hundred lines of code follow

})

Use the pattern (and the tools) when:
The problem naturally breaks the data into smaller pieces
You can solve the problem on each piece in the same way, and
independently of the other pieces
You need to re-integrate the piecemeal solutions

36-350 Lecture 22

	The View from 30,000 Feet
	An Easy Warm-Up
	A Slightly Less Easy Warm-Up
	The Abstract Pattern

	How Can We Split?
	Splitting Arrays
	Splitting Lists
	Splitting Dataframes

	Processing After the Split
	The Processing Function
	The Output Data Structure

	Applying Split/Apply/Combine

