
Lecture 23: Databases
36-350

12 November 2014

Agenda

• What databases are, and why
• SQL
• Interfacing R and SQL

Reading: Spector, chapter 3; handout on class website

Databases

• A record is a collection of fields
• A table is a collection of records which all have the same fields (with different values)
• A database is a collection of tables

Databases vs. Dataframes

• R’s dataframes are actually tables

R jargon Database jargon
column field
row record
dataframe table
types of the columns table schema
bunch of related dataframes database

So, Why Do We Need Database Software?

• Size

– R keeps its dataframes in memory
– Industrial databases can be much bigger
– Work with selected subsets

• Speed

– Clever people have worked very hard on getting just what you want fast

• Concurrency

– Many users accessing the same database simultaneously)
– Lots of potential for trouble (two users want to change the same record at once)

1

The Client-Server Model

• Databases live on a server, which manages them
• Users interact with the server through a client program
• Lets multiple users access the same database simultaneously

SQL

• SQL (structured query language) is the standard for database software
• Mostly about queries, which are like doing a selection in R

debt[debt$Country=="France",c("growth","ratio")]
with(debt,debt[Country=="France",c("growth","ratio")])
subset(x=debt,subset=(Country=="France"),select=c("growth","ratio"))

• Let’s look at how SQL does stuff like this

SELECT

SELECT columns or computations
FROM table
WHERE condition
GROUP BY columns
HAVING condition
ORDER BY column [ASC|DESC]
LIMIT offset,count;

• SELECT is the first word of a query, then modifiers say which fields/columns to use, and what conditions
records/rows must meet, from which tables

• The final semi-colon is obligatory

SELECT

SELECT PlayerID,yearID,AB,H FROM Batting;

Four columns from table Batting

SELECT * FROM Salaries;

All columns from table Salaries

SELECT * FROM Salaries ORDER BY Salary;

As above, but by ascending value of Salary

SELECT * FROM Salaries ORDER BY Salary DESC;

2

Descending order

SELECT * FROM Salaries ORDER BY Salary DESC LIMIT 10;

top 10 salaries

SELECT

Picking out rows meeting a condition

SELECT PlayerID,yearID,AB,H FROM Batting WHERE AB > 100 AND H > 0;

vs.

Batting[Batting$AB>100 & Batting$H > 0, c("PlayerID","yearID","AB","H")]

Calculated Columns

• SQL knows about some simple summary statistics:

SELECT MIN(AB), AVG(AB), MAX(AB) FROM Batting;

• It can do arithmetic

SELECT AB,H,H/CAST(AB AS REAL) FROM Batting;

<small>Because `AB` and `H` are integers, and it won't give you a fractional part by default</small>

• Calculated columns can get names:

SELECT PlayerID,yearID,H/CAST(AB AS REAL) AS BattingAvg FROM Batting
ORDER BY BattingAvg DESC LIMIT 10;

Aggregating

We can do calculations on value-grouped subsets, like in aggregate or d*ply

SELECT playerID, SUM(salary) FROM Salaries GROUP BY playerID

Selecting Again

• First cut of records is with WHERE
• Aggregation of recordw with GROUP BY
• Post-aggregation selection with HAVING

SELECT playerID, SUM(salary) AS totalSalary FROM Salaries GROUP BY playerID
HAVING totalSalary > 200000000

3

JOIN

• So far FROM has just been one table
• Sometimes we need to combine information from many tables

patient_last patient_first physician_id complaint
Morgan Dexter 37010 insomnia
Soprano Anthony 79676 malaise
Swearengen Albert NA healthy as a goddam horse
Garrett Alma 90091 nerves
Holmes Sherlock 43675 nicotine-patch addiction

physician_last physician_first physicianID plan

Meridian Emmett 37010 UPMC
Melfi Jennifer 79676 BCBS
Cochran Amos 90091 UPMC
Watson John 43675 VA

JOIN

• Suppose we want to know which doctors are treating patients for insomnia
• Complaints are in one table
• Physicians are in the other
• In R, we’d use merge to link the tables up by physicianID
• Here, physician_id or physicianID is acting as the key or unique identifier

JOIN

• SQL doesn’t have merge, it has JOIN as a modifier to FROM

SELECT physician_first, physician_last FROM patients INNER JOIN physicians ON patients.physician_id == physicians.physicianID WHERE condition=="insomnia"

Creates a (virtual) table linking records where physician_id in one table matches physicianID in the other

• If the names were the same in the two tables, we could write (e.g.)

SELECT nameLast,nameFirst,yearID,AB,H FROM Master INNER JOIN Batting
USING(playerID);

INNER JOIN ... USING links records with the same value of playerID

• There are some syntax variants here; see the handout

4

JOIN

• LEFT OUTER JOIN includes records from the first table which don’t match any record in the 2nd

– The “extra” records get NA in the 2nd table’s fields

• RIGHT OUTER JOIN is just what you’d think

– so is FULL OUTER JOIN

Updated Translation Table

R jargon Database jargon
column field
row record
dataframe table
types of the columns table schema
bunch of dataframes database
selections, subset SELECT ... FROM ... WHERE ... HAVING
aggregate, d*ply GROUP BY
merge JOIN
order ORDER BY

Connecting R to SQL

• SQL is a language; database management systems (DMBS) actually implement it and do the work

– MySQL, SQLite, etc., etc.

• They all have somewhat different conventions
• The R package DBI is a unified interface to them
• Need a separate “driver” for each DBMS

Connecting R to SQL

install.packages("DBI", dependencies = TRUE) # Install DBI
install.packages("RSQLite", dependencies = TRUE) # Install driver for SQLite
library(RSQLite)
drv <- dbDriver('SQLite')
con <- dbConnect(drv, dbname="baseball.db")

con is now a persistent connection to the database baseball.db

Connecting R to SQL

dbListTables(con) # Get tables in the database (returns vector)
dbListFields(con, name) # List fields in a table
dbReadTable(con, name) # Import a table as a data frame

5

Connecting R to SQL

dbGetQuery(conn, statement)
df <- dbGetQuery(con, paste(

"SELECT nameLast,nameFirst,yearID,salary",
"FROM Master NATURAL JOIN Salaries"))

Connecting R to SQL

Usual workflow: - Load the driver, connect to the right database - R sends an SQL query to the DBMS -
SQL executes the query, sending back a manageably small dataframe - R does the actual statistics - Close
the connection when you’re done

Going the Other Way

• The sqldf package lets you use SQL commands on dataframes
• Mostly useful if you already know SQL better than R. . .

Summary

• A database is basically a way of dealing efficiently with lots of potentially huge dataframes
• SQL is the standard language for telling databases what to do, especially what queries to run
• Everything in an SQL query is something we’ve practiced already in R

– subsetting/selection, aggregation, merging, ordering

• Connect R to the database, send it an SQL query, analyse the returned dataframe

6

	Agenda
	Databases
	Databases vs. Dataframes
	So, Why Do We Need Database Software?
	The Client-Server Model
	SQL
	SELECT
	SELECT
	SELECT
	Calculated Columns
	Aggregating
	Selecting Again
	JOIN
	JOIN
	JOIN
	JOIN
	Updated Translation Table
	Connecting R to SQL
	Connecting R to SQL
	Connecting R to SQL
	Connecting R to SQL
	Connecting R to SQL
	Going the Other Way
	Summary

