
How the North American Mammalian Paleofauna

Got a Crook in Its Curve

36-402, Advanced Data Analysis

Due Tuesday, 21 February 2012, at 10:30 am

We continue to work with the fossil data set from homework 3. Paleontolo-
gists have suggested that the right curve relating change in log mass to ancestral
log mass should be piece-wise linear: a downward-sloping line for small ancestral
log masses, and flat for larger ancestral masses. In this problem set, you will fit
that model, and see whether the data supports non-linear corrections.

You will first need to load the data set from homework 3, and add the
column of change in log mass to the data frame. (See solutions that problem
set, if necessary.)

1. (5 points) The piece-wise linear model predicts the following mean re-
sponse as a function of the input x:

ŷ(x) =
{

a + bx if x ≤ d
c if x ≥ d

Assuming that this is continuous at d, solve for a in terms of b, c and d.
Explain why, in this application, it is reasonable to assume continuity.

2. (5 points) Write a function in R, called deac1, that takes in a vector of
numbers x, and three parameters b, c, and d, and returns the prediction
of the model at each value of x.

Check that your deac function is working properly by seeing that when
b = −1, c = 0.05 and d = 2, giving x=c(1,1.5,3) gives outputs of

[1] 1.05 0.55 0.05

Plot deac, with those parameters, over the range (0, 4). Does it look right?

Hints: ifelse for writing deac, curve for plotting.

3. (15 points total) Because deac varies nonlinearly with parameter d, we
cannot estimate it by linear regression. However, we can still estimate the
parameters by least squares. To do this, we need to write a function, make

1From the initials of the scientists who proposed this model; they didn’t give it a name.
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a starting guess about the parameters, and use the built-in optimization
function optim (see recipe 13.2 in The R Cookbook).2. The following func-
tion fits the model to a data set by numerically minimizing the sum of
squared errors:

my.start <- c(b=-1,c=0.2,d=10)
fit.a.deac <- function(data,start=my.start) {
sse <- function(par) {
preds <- deac(data$ln_old_mass,par[1],par[2],par[3])
sum((data$delta_ln_mass - preds)^2)

}
fit <- optim(par=start,fn=sse,method="Nelder-Mead")
coefficients <- fit$par
fitted <- deac(data$ln_old_mass,coefficients[1],coefficients[2],
coefficients[3])

residuals <- data$delta_ln_mass - fitted
mse <- mean(residuals^2)
return(list(coefficients=coefficients,fitted=fitted,residuals=residuals,
mse=mse,data=data))

}

(See online for the commented version; you’ll want to source that, rather
than typing this in and adding original errors.)

(a) (7) Explain what the inner function, sse, does.

(b) (8) What sort of output does fit.a.deac give — a vector, a list,
an array, what? What do the various components of the output
represent, in terms of the statistical problem?

4. (15 points) Starting positions

(a) (10) The code given above looks for a vector of initial parameters
called my.start, if no other starting point is supplied. The line before
the function makes up some values for my.start; they are bad ones.
Find a better starting value for d by examining your non-parametric
fit in homework 3. (If you couldn’t get that to work, look at the
solutions.) Get a rough guess for c by taking the average change in
log mass over all animals whose ancestral log mass was greater than
your guess for d. Get a rough guess for b by linearly regressing the
change in log mass on the ancestral log mass for animals where the
latter is less than your guess for d. Explain why this both guesses
make sense.

2R has a built-in function, nls, for such “nonlinear least-squares” estimation, working more
like lm. Unfortunately, nls can be flaky when the model doesn’t have continuous derivatives,
which is the case here. Besides, writing your own code builds character.
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(b) (5) Re-define my.start to contain your initial guesses for b, c and
d. Run fit.a.deac to get a fitted model, which you should call
nampd.deac. Plot the fitted values as a function of log ancestral
mass on a scatter-plot of change in log mass versus log ancestral
mass.

5. (20 points) Bootstrapping will continue until morale improves. Use resam-
pling of residuals, not cases, in both parts.

(a) (10) Find bootstrap standard errors, and 95% confidence intervals,
for the parameters b, c and d. Report all these quantities. Reporting
more significant digits than is justified by statistical precision will
cost you points.

(b) (10) Find 95% bootstrap confidence bands for the fitted curve, and
add them to your plot from the previous problem.
Note: You can use the same resampled data-frames for both parts of
this problem and the previous one, but it needs more clever program-
ming. 1000 bootstrap replicates takes 1–2 minutes on my computer.

6. (30 points) Testing parametric forms

(a) (5) Use smooth.spline to fit a smoothing spline to the data. Add the
curve to the plot. Find the (in-sample) MSE of both the smoothing
spline and the parametric model. Which fits better?

(b) (3) Write a function to fit the smoothing spline to a data set. Check
that it works by making sure it gives the right answer on the original
data.

(c) (6) Write a function to calculate the MSE of a fitted smoothing spline.
Check that it works by making sure it gives the right answer on the
original data.

(d) (6) Write a function to take in a data set and return the difference
in MSEs between the parametric model and the smoothing spline.

(e) (8) Combine your functions to draw 1000 samples from the distribu-
tion of this test statistic, under the null hypothesis that the paramet-
ric model is right.

(f) (2) What is the p-value of this test of the null hypothesis?

7. (10) Does this parametric model seem like an acceptable representation of
the data? Justify your answer by referring to your work above.
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