
Chapter 1

Regression: Predicting and
Relating Quantitative Features

1.1 Statistics, Data Analysis, Regression
Statistics is the science which uses mathematics to study and improve ways of draw-
ing reliable inferences from incomplete, noisy, corrupt, irreproducible and otherwise
imperfect data.

The subject of most sciences is some aspect of the world around us, or within
us. Psychology studies minds; geology studies the Earth’s composition and form;
economics studies production, distribution and exchange; mycology studies mush-
rooms. Statistics does not study the world, but some of the ways we try to under-
stand the world — some of the intellectual tools of the other sciences. Its utility comes
indirectly, through helping those other sciences.

This utility is very great, because all the sciences have to deal with imperfect
data. Data may be imperfect because we can only observe and record a small fraction
of what is relevant; or because we can only observe indirect signs of what is truly
relevant; or because, no matter how carefully we try, our data always contain an
element of noise. Over the last two centuries, statistics has come to handle all such
imperfections by modeling them as random processes, and probability has become
so central to statistics that we introduce random events deliberately (as in sample
surveys).1

Statistics, then, uses probability to model inference from data. We try to math-
ematically understand the properties of different procedures for drawing inferences:
Under what conditions are they reliable? What sorts of errors do they make, and
how often? What can they tell us when they work? What are signs that something
has gone wrong? Like some other sciences, such as engineering, medicine and eco-
nomics, statistics aims not just at understanding but also at improvement: we want to
analyze data better, more reliably, with fewer and smaller errors, under broader con-

1Two excellent, but very different, histories of how statistics came to this understanding are Hacking
(1990) and Porter (1986).

13

14 CHAPTER 1. REGRESSION BASICS

ditions, faster, and with less mental effort. Sometimes some of these goals conflict
— a fast, simple method might be very error-prone, or only reliable under a narrow
range of circumstances.

One of the things that people most often want to know about the world is how
different variables are related to each other, and one of the central tools statistics has
for learning about relationships is regression.2 In 36-401, you learned how to do lin-
ear regression, learned about how it could be used in data analysis, and learned about
its properties. In this class, we will build on that foundation, extending beyond basic
linear regression in many directions, to answer many questions about how variables
are related to each other.

This is intimately related to prediction. Being able to make predictions isn’t the
only reason we want to understand relations between variables, but prediction tests
our knowledge of relations. (If we misunderstand, we might still be able to predict,
but it’s hard to see how we could understand and not be able to predict.) So before
we go beyond linear regression, we will first look at prediction, and how to predict
one variable from nothing at all. Then we will look at predictive relationships be-
tween variables, and see how linear regression is just one member of a big family of
smoothing methods, all of which are available to us.

1.2 Guessing the Value of a Random Variable

We have a quantitative, numerical variable, which we’ll imaginatively call Y . We’ll
suppose that it’s a random variable, and try to predict it by guessing a single value
for it. (Other kinds of predictions are possible — we might guess whether Y will fall
within certain limits, or the probability that it does so, or even the whole probability
distribution of Y . But some lessons we’ll learn here will apply to these other kinds
of predictions as well.) What is the best value to guess? More formally, what is the
optimal point forecast for Y ?

To answer this question, we need to pick a function to be optimized, which
should measure how good our guesses are — or equivalently how bad they are, how
big an error we’re making. A reasonable start point is the mean squared error:

MSE(a)≡ E
�
(Y − a)2
�

(1.1)

2The origin of the name is instructive. It comes from 19th century investigations into the relationship
between the attributes of parents and their children. People who are taller (heavier, faster, . . .) than
average tend to have children who are also taller than average, but not quite as tall. Likewise, the children
of unusually short parents also tend to be closer to the average, and similarly for other traits. This came to
be called “regression towards the mean”, or even “regression towards mediocrity”; hence the line relating
the average height (or whatever) of children to that of their parents was “the regression line”, and the word
stuck.

1.3. THE REGRESSION FUNCTION 15

So we’d like to find the value r where MSE(a) is smallest.

MSE(a) = E
�
(Y − a)2
�

(1.2)

= (E[Y − a])2+Var[Y − a] (1.3)
= (E[Y − a])2+Var[Y] (1.4)
= (E[Y]− a)2+Var[Y] (1.5)

dMSE
da

= 2 (E[Y]− a)+ 0 (1.6)

2(E[Y]− r) = 0 (1.7)
r = E[Y] (1.8)

So, if we gauge the quality of our prediction by mean-squared error, the best predic-
tion to make is the expected value.

1.2.1 Estimating the Expected Value
Of course, to make the prediction E[Y] we would have to know the expected value
of Y . Typically, we do not. However, if we have sampled values, y1, y2, . . . yn , we can
estimate the expectation from the sample mean:

�r ≡ 1
n

n�
i=1

yi (1.9)

If the samples are independent and identically distributed (IID), then the law of large
numbers tells us that

�r → E[Y] = r (1.10)

and the central limit theorem tells us something about how fast the convergence is
(namely the squared error will typically be about Var[Y]/n).

Of course the assumption that the yi come from IID samples is a strong one, but
we can assert pretty much the same thing if they’re just uncorrelated with a common
expected value. Even if they are correlated, but the correlations decay fast enough, all
that changes is the rate of convergence. So “sit, wait, and average” is a pretty reliable
way of estimating the expectation value.

1.3 The Regression Function
Of course, it’s not very useful to predict just one number for a variable. Typically,
we have lots of variables in our data, and we believe they are related somehow. For
example, suppose that we have data on two variables, X and Y , which might look
like Figure 1.1. The feature Y is what we are trying to predict, a.k.a. the dependent
variable or output or response, and X is the predictor or independent variable
or covariate or input. Y might be something like the profitability of a customer
and X their credit rating, or, if you want a less mercenary example, Y could be
some measure of improvement in blood cholesterol and X the dose taken of a drug.

16 CHAPTER 1. REGRESSION BASICS

Typically we won’t have just one input feature X but rather many of them, but that
gets harder to draw and doesn’t change the points of principle.

Figure 1.2 shows the same data as Figure 1.1, only with the sample mean added
on. This clearly tells us something about the data, but also it seems like we should be
able to do better — to reduce the average error — by using X , rather than by ignoring
it.

Let’s say that the we want our prediction to be a function of X , namely f (X).
What should that function be, if we still use mean squared error? We can work this
out by using the law of total expectation, i.e., the fact that E[U] = E[E[U |V]] for
any random variables U and V .

MSE(f (X)) = E
�
(Y − f (X))2
�

(1.11)

= E
�

E
�
(Y − f (X))2|X
��

(1.12)

= E
�

Var[Y |X]+ (E[Y − f (X)|X])2
�

(1.13)

When we want to minimize this, the first term inside the expectation doesn’t depend
on our prediction, and the second term looks just like our previous optimization
only with all expectations conditional on X , so for our optimal function r (x) we get

r (x) = E[Y |X = x] (1.14)

In other words, the (mean-squared) optimal conditional prediction is just the condi-
tional expected value. The function r (x) is called the regression function. This is
what we would like to know when we want to predict Y .

1.3.1 Some Disclaimers
It’s important to be clear on what is and is not being assumed here. Talking about X
as the “independent variable” and Y as the “dependent” one suggests a causal model,
which we might write

Y ← r (X)+ ε (1.15)

where the direction of the arrow, ←, indicates the flow from causes to effects, and
ε is some noise variable. If the gods of inference are very, very kind, then ε would
have a fixed distribution, independent of X , and we could without loss of generality
take it to have mean zero. (“Without loss of generality” because if it has a non-zero
mean, we can incorporate that into r (X) as an additive constant.) However, no such
assumption is required to get Eq. 1.14. It works when predicting effects from causes,
or the other way around when predicting (or “retrodicting”) causes from effects, or
indeed when there is no causal relationship whatsoever between X and Y 3. It is
always true that

Y |X = r (X)+ η(X) (1.16)

where η(X) is a noise variable with mean zero, but as the notation indicates the
distribution of the noise generally depends on X .

3We will cover causal inference in considerable detail in Part III.

1.3. THE REGRESSION FUNCTION 17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

plot(all.x,all.y,xlab="x",ylab="y")
rug(all.x,side=1,col="grey")
rug(all.y,side=2,col="grey")

Figure 1.1: Scatterplot of the example data. (These are made up.) The rug commands
add horizontal and vertical ticks to the axes to mark the location of the data (in grey
so they’re less strong than the main tick-marks). This isn’t necessary but is often
helpful. The data are in the example.dat file.

18 CHAPTER 1. REGRESSION BASICS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

abline(h=mean(all.y),lty=3)

Figure 1.2: Data from Figure 1.1, with a horizontal line showing the sample mean of
Y .

1.4. ESTIMATING THE REGRESSION FUNCTION 19

It’s also important to be clear that when we find the regression function is a con-
stant, r (x) = r0 for all x, that this does not mean that X and Y are independent.
If they are independent, then the regression function is a constant, but turning this
around is the logical fallacy of “affirming the consequent”4.

1.4 Estimating the Regression Function
We want to find the regression function r (x) = E[Y |X = x], and what we’ve got
is a big set of training examples, of pairs (x1, y1), (x2, y2), . . . (xn , yn). How should we
proceed?

If X takes on only a finite set of values, then a simple strategy is to use the condi-
tional sample means:

�r (x) = 1
#{i : xi = x}
�

i :xi=x
yi (1.17)

By the same kind of law-of-large-numbers reasoning as before, we can be confident
that �r (x)→ E[Y |X = x].

Unfortunately, this only works if X has only a finite set of values. If X is contin-
uous, then in general the probability of our getting a sample at any particular value
is zero, is the probability of getting multiple samples at exactly the same value of x.
This is a basic issue with estimating any kind of function from data — the function
will always be undersampled, and we need to fill in between the values we see. We
also need to somehow take into account the fact that each yi is a sample from the
conditional distribution of Y |X = xi , and so is not generally equal to E

�
Y |X = xi
�

.
So any kind of function estimation is going to involve interpolation, extrapolation,
and smoothing.

Different methods of estimating the regression function — different regression
methods, for short — involve different choices about how we interpolate, extrapolate
and smooth. This involves our making a choice about how to approximate r (x) by
a limited class of functions which we know (or at least hope) we can estimate. There
is no guarantee that our choice leads to a good approximation in the case at hand,
though it is sometimes possible to say that the approximation error will shrink as
we get more and more data. This is an extremely important topic and deserves an
extended discussion, coming next.

1.4.1 The Bias-Variance Tradeoff

Suppose that the true regression function is r (x), but we use the function �r to make
our predictions. Let’s look at the mean squared error at X = x in a slightly different
way than before, which will make it clearer what happens when we can’t use r to

4As in combining the fact that all human beings are featherless bipeds, and the observation that a
cooked turkey is a featherless biped, to conclude that cooked turkeys are human beings. An econome-
trician stops there; an econometrician who wants to be famous writes a best-selling book about how this
proves that Thanksgiving is really about cannibalism.

20 CHAPTER 1. REGRESSION BASICS

make predictions. We’ll begin by expanding (Y − �r (x))2, since the MSE at x is just
the expectation of this.

(Y − �r (x))2 (1.18)
= (Y − r (x)+ r (x)− �r (x))2
= (Y − r (x))2+ 2(Y − r (x))(r (x)− �r (x))+ (r (x)− �r (x))2 (1.19)

We saw above (Eq. 1.16) that Y − r (x) = η, a random variable which has expectation
zero (and is uncorrelated with x). When we take the expectation of Eq. 1.19, nothing
happens to the last term (since it doesn’t involve any random quantities); the middle
term goes to zero (because E[Y − r (x)] = E[η] = 0), and the first term becomes the
variance of η. This depends on x, in general, so let’s call it σ2

x . We have

MSE(�r (x)) = σ2
x + ((r (x)− �r (x))2 (1.20)

The σ2
x term doesn’t depend on our prediction function, just on how hard it is, in-

trinsically, to predict Y at X = x. The second term, though, is the extra error we
get from not knowing r . (Unsurprisingly, ignorance of r cannot improve our pre-
dictions.) This is our first bias-variance decomposition: the total MSE at x is de-
composed into a (squared) bias r (x)− �r (x), the amount by which our predictions
are systematically off, and a variance σ2

x , the unpredictable, “statistical” fluctuation
around even the best prediction.

All of the above assumes that �r is a single fixed function. In practice, of course,
�r is something we estimate from earlier data. But if those data are random, the exact
regression function we get is random too; let’s call this random function �Rn , where
the subscript reminds us of the finite amount of data we used to estimate it. What we
have analyzed is really MSE(�Rn(x)|�Rn = �r), the mean squared error conditional on a
particular estimated regression function. What can we say about the prediction error
of the method, averaging over all the possible training data sets?

MSE(�Rn(x)) = E
�
(Y −�Rn(X))

2|X = x
�

(1.21)

= E
�

E
�
(Y −�Rn(X))

2|X = x,�Rn = �r
�
|X = x
�

(1.22)

= E
�
σ2

x + (r (x)−�Rn(x))
2|X = x
�

(1.23)

= σ2
x +E
�
(r (x)−�Rn(x))

2|X = x
�

(1.24)

= σ2
x +E
�
(r (x)−E
��Rn(x)
�
+E
��Rn(x)
�
−�Rn(x))

2
�

(1.25)

= σ2
x +
�

r (x)−E
��Rn(x)
��2
+Var
��Rn(x)
�

(1.26)

This is our second bias-variance decomposition — I pulled the same trick as before,
adding and subtract a mean inside the square. The first term is just the variance
of the process; we’ve seen that before and isn’t, for the moment, of any concern.
The second term is the bias in using �Rn to estimate r — the approximation bias or

1.4. ESTIMATING THE REGRESSION FUNCTION 21

approximation error. The third term, though, is the variance in our estimate of the
regression function. Even if we have an unbiased method (r (x) = E

��Rn(x)
�

), if there
is a lot of variance in our estimates, we can expect to make large errors.

The approximation bias has to depend on the true regression function. For ex-
ample, if E
��Rn(x)
�
= 42+ 37x, the error of approximation will be zero if r (x) =

42+ 37x, but it will be larger and x-dependent if r (x) = 0. However, there are flexi-
ble methods of estimation which will have small approximation biases for all r in a
broad range of regression functions. The catch is that, at least past a certain point,
decreasing the approximation bias can only come through increasing the estimation
variance. This is the bias-variance trade-off. However, nothing says that the trade-
off has to be one-for-one. Sometimes we can lower the total error by introducing
some bias, since it gets rid of more variance than it adds approximation error. The
next section gives an example.

In general, both the approximation bias and the estimation variance depend on n.
A method is consistent5 when both of these go to zero as n→ 0 — that is, if we re-
cover the true regression function as we get more and more data.6 Again, consistency
depends on how well the method matches the actual data-generating process, not just
on the method, and again, there is a bias-variance trade-off. There can be multiple
consistent methods for the same problem, and their biases and variances don’t have
to go to zero at the same rates.

1.4.2 The Bias-Variance Trade-Off in Action
Let’s take an extreme example: we could decide to approximate r (x) by a constant r0.
The implicit smoothing here is very strong, but sometimes appropriate. For instance,
it’s appropriate when r (x) really is a constant! Then trying to estimate any additional
structure in the regression function is just so much wasted effort. Alternately, if r (x)
is nearly constant, we may still be better off approximating it as one. For instance,
suppose the true r (x) = r0+ a sin (νx), where a� 1 and ν � 1 (Figure 1.3 shows an
example). With limited data, we can actually get better predictions by estimating a
constant regression function than one with the correct functional form.

1.4.3 Ordinary Least Squares Linear Regression as Smoothing
Let’s revisit ordinary least-squares linear regression from this point of view. Let’s
assume that the independent variable X is one-dimensional, and that both X and Y

5To be precise, consistent for r , or consistent for conditional expectations. More generally, an
estimator of any property of the data, or of the whole distribution, is consistent if it converges on the
truth.

6You might worry about this claim, especially if you’ve taken more probability theory — aren’t we
just saying something about average performance of the �R, rather than any particular estimated regression
function? But notice that if the estimation variance goes to zero, then by Chebyshev’s inequality each
�Rn (x) comes arbitrarily close to E

��Rn (x)
�

with arbitrarily high probability. If the approximation bias
goes to zero, therefore, the estimated regression functions converge in probability on the true regression
function, not just in mean.

22 CHAPTER 1. REGRESSION BASICS

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

y

ugly.func = function(x) {1 + 0.01*sin(100*x)}
r = runif(100); y = ugly.func(r) + rnorm(length(r),0,0.5)
plot(r,y,xlab="x",ylab="y"); curve(ugly.func,add=TRUE)
abline(h=mean(y),col="red")
sine.fit = lm(y ~ 1+ sin(100*r))
curve(sine.fit$coefficients[1]+sine.fit$coefficients[2]*sin(100*x),

col="blue",add=TRUE)

Figure 1.3: A rapidly-varying but nearly-constant regression function; Y = 1 +
0.01 sin100x + ε, with ε ∼ � (0,0.1). (The x values are uniformly distributed be-
tween 0 and 1.) Red: constant line at the sample mean. Blue: estimated function of
the same form as the true regression function, i.e., r0 + a sin100x. If the data set is
small enough, the constant actually generalizes better — the bias of using the wrong
functional form is smaller than the additional variance from the extra degrees of free-
dom. Here, the root-mean-square (RMS) error of the constant on new data is 0.50,
while that of the estimated sine function is 0.51 — using the right function actually
hurts us!

1.4. ESTIMATING THE REGRESSION FUNCTION 23

are centered (i.e. have mean zero) — neither of these assumptions is really necessary,
but they reduce the book-keeping.

We choose to approximate r (x) by α+βx, and ask for the best values a, b of those
constants. These will be the ones which minimize the mean-squared error.

M SE(α,β) = E
�
(Y −α−βX)2
�

(1.27)

= E
�
(Y −α−βX)2|X

�
(1.28)

= E
�

Var[Y |X]+ (E[Y −α−βX |X])2
�

(1.29)

= E[Var[Y |X]]+E
�
(E[Y −α−βX |X])2

�
(1.30)

The first term doesn’t depend on α or β, so we can drop it for purposes of optimiza-
tion. Taking derivatives, and then brining them inside the expectations,

∂ M SE
∂ α

= E[2(Y −α−βX)(−1)] (1.31)

E[Y − a− bX] = 0 (1.32)
a = E[Y]− bE[X] = 0 (1.33)

using the fact that X and Y are centered; and,

∂ M SE
∂ β

= E[2(Y −α−βX)(−X)] (1.34)

E[X Y]− bE
�

X 2
�
= 0 (1.35)

b =
Cov[X ,Y]

Var[X]
(1.36)

again using the centering of X and Y . That is, the mean-squared optimal linear pre-
diction is

r (x) = x
Cov[X ,Y]

Var[X]
(1.37)

Now, if we try to estimate this from data, there are (at least) two approaches. One
is to replace the true population values of the covariance and the variance with their
sample values, respectively

1
n

�
i

yi xi (1.38)

and
1
n

�
i

x2
i (1.39)

(again, assuming centering). The other is to minimize the residual sum of squares,

RSS(α,β)≡
�

i

�
yi −α−βxi
�2 (1.40)

24 CHAPTER 1. REGRESSION BASICS

You may or may not find it surprising that both approaches lead to the same answer:

�a = 0 (1.41)

�b =
�

i yi xi�
i x2

i

(1.42)

Provided that Var[X] > 0, this will converge with IID samples, so we have a consis-
tent estimator.7

We are now in a position to see how the least-squares linear regression model is
really a smoothing of the data. Let’s write the estimated regression function explicitly
in terms of the training data points.

�r (x) = �b x (1.43)

= x
�

i yi xi�
i x2

i

(1.44)

=
�

i
yi

xi�
j x2

j

x (1.45)

=
�

i
yi

xi

ns2
X

x (1.46)

where s2
X is the sample variance of X . In words, our prediction is a weighted average

of the observed values yi of the dependent variable, where the weights are propor-
tional to how far xi is from the center, relative to the variance, and proportional to
the magnitude of x. If xi is on the same side of the center as x, it gets a positive
weight, and if it’s on the opposite side it gets a negative weight.

Figure 1.4 shows the data from Figure 1.1 with the least-squares regression line
added. It will not escape your notice that this is very, very slightly different from the
constant regression function; the coefficient on X is 6.3×10−3. Visually, the problem
is that there should be a positive slope in the left-hand half of the data, and a negative
slope in the right, but the slopes are the densities are balanced so that the best single
slope is zero.8

Mathematically, the problem arises from the somewhat peculiar way in which
least-squares linear regression smoothes the data. As I said, the weight of a data point
depends on how far it is from the center of the data, not how far it is from the point
at which we are trying to predict. This works when r (x) really is a straight line, but
otherwise — e.g., here — it’s a recipe for trouble. However, it does suggest that if
we could somehow just tweak the way we smooth the data, we could do better than
linear regression.

7Eq. 1.41 may look funny, but remember that we’re assuming X and Y have been centered. Centering
doesn’t change the slope of the least-squares line but does change the intercept; if we go back to the un-
centered variables the intercept becomes Y − �bX , where the bar denotes the sample mean.

8The standard test of whether this coefficient is zero is about as far from rejecting the null hypothesis
as you will ever see, p = 0.95. Remember this the next time you look at regression output.

1.4. ESTIMATING THE REGRESSION FUNCTION 25

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

fit.all = lm(all.y~all.x)
abline(fit.all)

Figure 1.4: Data from Figure 1.1, with a horizontal line at the mean (dotted) and
the ordinary least squares regression line (solid). If you zoom in online you will see
that there really are two lines there. (The abline adds a line to the current plot
with intercept a and slope b; it’s set up to take the appropriate coefficients from the
output of lm.

26 CHAPTER 1. REGRESSION BASICS

1.5 Linear Smoothers
The sample mean and the linear regression line are both special cases of linear smoothers,
which are estimates of the regression function with the following form:

�r (x) =
�

i
yi �w(xi , x) (1.47)

The sample mean is the special case where �w(xi , x) = 1/n, regardless of what xi
and x are.

Ordinary linear regression is the special case where �w(xi , x) = (xi/ns2
X)x.

Both of these, as remarked, ignore how far xi is from x.

1.5.1 k-Nearest-Neighbor Regression
At the other extreme, we could do nearest-neighbor regression:

�w(xi , x) =
�

1 xi nearest neighbor of x
0 otherwise (1.48)

This is very sensitive to the distance between xi and x. If r (x) does not change too
rapidly, and X is pretty thoroughly sampled, then the nearest neighbor of x among
the xi is probably close to x, so that r (xi) is probably close to r (x). However, yi =
r (xi)+noise, so nearest-neighbor regression will include the noise into its prediction.
We might instead do k-nearest neighbor regression,

�w(xi , x) =
�

1/k xi one of the k nearest neighbors of x
0 otherwise (1.49)

Again, with enough samples all the k nearest neighbors of x are probably close to x,
so their regression functions there are going to be close to the regression function at
x. But because we average their values of yi , the noise terms should tend to cancel
each other out. As we increase k, we get smoother functions — in the limit k = n
and we just get back the constant. Figure 1.5 illustrates this for our running example
data.9

To use k-nearest-neighbors regression, we need to pick k somehow. This means
we need to decide how much smoothing to do, and this is not trivial. We will return
to this point.

Because k-nearest-neighbors averages over only a fixed number of neighbors, each
of which is a noisy sample, it always has some noise in its prediction, and is generally
not consistent. This may not matter very much with moderately-large data (espe-
cially once we have a good way of picking k). However, it is sometimes useful to
let k systematically grow with n, but not too fast, so as to avoid just doing a global
average; say k ∝�n. Such schemes can be consistent.

9The code uses the k-nearest neighbor function provided by the package knnflex (available from
CRAN). This requires one to pre-compute a matrix of the distances between all the points of inter-
est, i.e., training data and testing data (using knn.dist); the knn.predict function then needs
to be told which rows of that matrix come from training data and which from testing data. See
help(knnflex.predict) for more, including examples.

1.5. LINEAR SMOOTHERS 27

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

library(knnflex)
all.dist = knn.dist(c(all.x,seq(from=0,to=1,length.out=100)))
all.nn1.predict = knn.predict(1:110,111:210,all.y,all.dist,k=1)
abline(h=mean(all.y),lty=2)
lines(seq(from=0,to=1,length.out=100),all.nn1.predict,col="blue")
all.nn3.predict = knn.predict(1:110,111:210,all.y,all.dist,k=3)
lines(seq(from=0,to=1,length.out=100),all.nn3.predict,col="red")
all.nn5.predict = knn.predict(1:110,111:210,all.y,all.dist,k=5)
lines(seq(from=0,to=1,length.out=100),all.nn5.predict,col="green")
all.nn20.predict = knn.predict(1:110,111:210,all.y,all.dist,k=20)
lines(seq(from=0,to=1,length.out=100),all.nn20.predict,col="purple")

Figure 1.5: Data points from Figure 1.1 with horizontal dashed line at the mean and
the k-nearest-neighbor regression curves for k = 1 (blue), k = 3 (red), k = 5 (green)
and k = 20 (purple). Note how increasing k smoothes out the regression line, and
pulls it back towards the mean. (k = 100 would give us back the dashed horizontal
line.)

28 CHAPTER 1. REGRESSION BASICS

1.5.2 Kernel Smoothers
Changing k in a k-nearest-neighbors regression lets us change how much smoothing
we’re doing on our data, but it’s a bit awkward to express this in terms of a number
of data points. It feels like it would be more natural to talk about a range in the
independent variable over which we smooth or average. Another problem with k-
NN regression is that each testing point is predicted using information from only a
few of the training data points, unlike linear regression or the sample mean, which
always uses all the training data. If we could somehow use all the training data, but
in a location-sensitive way, that would be nice.

There are several ways to do this, as we’ll see, but a particularly useful one is to use
a kernel smoother, a.k.a. kernel regression or Nadaraya-Watson regression. To
begin with, we need to pick a kernel function10 K(xi , x)which satisfies the following
properties:

1. K(xi , x)≥ 0

2. K(xi , x) depends only on the distance xi − x, not the individual arguments

3.
�

xK(0, x)d x = 0

4. 0<
�

x2K(0, x)d x <∞
These conditions together (especially the last one) imply that K(xi , x)→ 0 as |xi −
x| → ∞. Two examples of such functions are the density of the Unif(−h/2, h/2)
distribution, and the density of the standard Gaussian � (0,

�
h) distribution. Here

h can be any positive number, and is called the bandwidth.
The Nadaraya-Watson estimate of the regression function is

�r (x) =
�

i
yi

K(xi , x)�
j K(xj , x)

(1.50)

i.e., in terms of Eq. 1.47,

�w(xi , x) =
K(xi , x)�
j K(xj , x)

(1.51)

(Notice that here, as in k-NN regression, the sum of the weights is always 1. Why?)11

What does this achieve? Well, K(xi , x) is large if xi is close to x, so this will place
a lot of weight on the training data points close to the point where we are trying to
predict. More distant training points will have smaller weights, falling off towards
zero. If we try to predict at a point x which is very far from any of the training
data points, the value of K(xi , x) will be small for all xi , but it will typically be much,

10There are many other mathematical objects which are also called “kernels”. Some of these meanings
are related, but not all of them. (Cf. “normal”.)

11What do we do if K(xi , x) is zero for some xi ? Nothing; they just get zero weight in the average.
What do we do if all the K(xi , x) are zero? Different people adopt different conventions; popular ones
are to return the global, unweighted mean of the yi , to do some sort of interpolation from regions where
the weights are defined, and to throw up our hands and refuse to make any predictions (computationally,
return NA).

1.5. LINEAR SMOOTHERS 29

much smaller for all the xi which are not the nearest neighbor of x, so �w(xi , x)≈ 1 for
the nearest neighbor and ≈ 0 for all the others.12 That is, far from the training data,
our predictions will tend towards nearest neighbors, rather than going off to ±∞, as
linear regression’s predictions do. Whether this is good or bad of course depends on
the true r (x)— and how often we have to predict what will happen very far from the
training data.

Figure 1.6 shows our running example data, together with kernel regression esti-
mates formed by combining the uniform-density, or box, and Gaussian kernels with
different bandwidths. The box kernel simply takes a region of width h around the
point x and averages the training data points it finds there. The Gaussian kernel gives
reasonably large weights to points within h of x, smaller ones to points within 2h,
tiny ones to points within 3h, and so on, shrinking like e−(x−xi)2/2h . As promised, the
bandwidth h controls the degree of smoothing. As h →∞, we revert to taking the
global mean. As h→ 0, we tend to get spikier functions — with the Gaussian kernel
at least it tends towards the nearest-neighbor regression.

If we want to use kernel regression, we need to choose both which kernel to
use, and the bandwidth to use with it. Experience, like Figure 1.6, suggests that the
bandwidth usually matters a lot more than the kernel. This puts us back to roughly
where we were with k-NN regression, needing to control the degree of smoothing,
without knowing how smooth r (x) really is. Similarly again, with a fixed bandwidth
h, kernel regression is generally not consistent. However, if h → 0 as n →∞, but
doesn’t shrink too fast, then we can get consistency.

In Chapter 2, we’ll look more at the limits of linear regression and some exten-
sions; Chapter 3 will cover some key aspects of evaluating statistical models, includ-
ing regression models; and then Chapter 4 will come back to kernel regression.

12Take a Gaussian kernel in one dimension, for instance, so K(xi , x) ∝ e−(xi−x)2/2h2
. Say xi is the

nearest neighbor, and |xi − x|= L, with L� h. So K(xi , x)∝ e−L2/2h2
, a small number. But now for any

other xj , K(xi , x) ∝ e−L2/2h2 e−(x j−xi)L/2h2
e−(x j−xi)2/2h2 � e−L2/2h2

. — This assumes that we’re using a
kernel like the Gaussian, which never quite goes to zero, unlike the box kernel.

30 CHAPTER 1. REGRESSION BASICS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

plot(all.x,all.y,xlab="x",ylab="y")
rug(all.x,side=x,col="grey")
rug(all.y,side=y,col="grey")
lines(ksmooth(all.x, all.y, "box", bandwidth=2),col="blue")
lines(ksmooth(all.x, all.y, "box", bandwidth=1),col="red")
lines(ksmooth(all.x, all.y, "box", bandwidth=0.1),col="green")
lines(ksmooth(all.x, all.y, "normal", bandwidth=2),col="blue",lty=2)
lines(ksmooth(all.x, all.y, "normal", bandwidth=1),col="red",lty=2)
lines(ksmooth(all.x, all.y, "normal", bandwidth=0.1),col="green",lty=2)

Figure 1.6: Data from Figure 1.1 together with kernel regression lines. Solid col-
ored lines are box-kernel estimates, dashed colored lines Gaussian-kernel estimates.
Blue, h = 2; red, h = 1; green, h = 0.5; purple, h = 0.1 (per the definition of band-
width in the ksmooth function). Note the abrupt jump around x = 0.75 in the
box-kernel/h = 0.1 (solid purple) line — with a small bandwidth the box kernel is
unable to interpolate smoothly across the break in the training data, while the Gaus-
sian kernel can.

1.6. EXERCISES 31

1.6 Exercises
These are for you to think through, not to hand in.

1. Suppose we use the mean absolute error instead of the mean squared error:

MAE(a) = E[|Y − a|] (1.52)

Is this also minimized by taking a = E[Y]? If not, what value r̃ minimizes the
MAE? Should we use MSE or MAE to measure error?

2. Derive Eqs. 1.41 and 1.42 by minimizing Eq. 1.40.

3. What does it mean for Gaussian kernel regression to approach nearest-neighbor
regression as h → 0? Why does it do so? Is this true for all kinds of kernel
regression?

