Chapter 8

Additive Models

8.1 Partial Residuals and Backfitting for Linear Mod-
els

The general form of a linear regression model is

E[Y|)Z:f:|:ﬂo+/j~f=_

»
J=0

B;x; (8.1)
where for j € 1: p, the x; are the components of ¥, and x; is always the constant
1. (Adding a fictitious constant “feature” like this is a standard way of handling the

intercept just like any other regression coefficient.)

Suppose we don’t condition on all of X but just one component of it, say X,.
What is the conditional expectation of Y?

E[Y|X,=x] = E[E[Y|X,X,..X,,...X, ] 1X,=x,] 8.2)
?
= E|D B XX, =x (8.3)
j=0
= Bun+E| D BX X, =x, (8.4)
j#k

where the first line uses the law of total expectation!, and the second line uses Eq.

L As you learned in baby prob., this is the fact that E[Y|X] =E[E[Y|X,Z]|X] — that we can always
condition on another variable or variables (Z), provided we then average over those extra variables when
we’re done.
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8.1. Turned around,

B = E[YIX,=x]-E|> B8,XX,=x 8.5)
7k
= E|Y—|D 5, |IX=x (8.6)
#k

The expression in the expectation is the k™ partial residual — the (total) residual
is the difference between Y and its expectation, the partial residual is the difference
between Y and what we expect it to be ignoring the contribution from X,. Let’s
introduce a symbol for this, say Y.

Bixy =E[YO|X, =x,] (8.7)

In words, if the over-all model is linear, then the partial residuals are linear. And
notice that X, is the only input feature appearing here — if we could somehow get
hold of the partial residuals, then we can find 3, by doing a simple regression, rather
than a multiple regression. Of course to get the partial residual we need to know all

the other ,3]-3. ..

This suggests the following estimation scheme for linear models, known as the
Gauss-Seidel algorithm, or more commonly and transparently as backfitting; the
pseudo-code is in Example 17.

This is an iterative approximation algorithm. Initially, we look at how far each
point is from the global mean, and do simple regressions of those deviations on the
input features. This then gives us a better idea of what the regression surface really
is, and we use the deviations from that surface in our next set of simple regressions.
At each step, each coefficient is adjusted to fit in with what we already know about
the other coefficients — that’s why it’s called “backfitting”. It is not obvious? that
this converges, but it does, and the fixed point on which it converges is the usual
least-squares estimate of [3.

Backfitting is not usually how we fit linear models, because with modern numer-
ical linear algebra it’s actually faster to just calculate (x” x)~'x”'y. But the cute thing
about backfitting is that it doesn’t actually rely on the model being linear.

8.2 Additive Models

The additive model for regression is

. »
E[YIX=%] =a+ > f(x) (8.8)
j=1

2Unless, I suppose, you’re Gauss.
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Given: 7 x (p + 1) inputs x (0% column all 1s)
n X 1 responses y
small tolerance & >0
center y and each column of x
B;«0forjel:p
forkel:p{
) ~
yf ) =Yi— Zj;é/e /Bjxi/
¥, « regression coefficient of y*) on x

o~

/Ble‘—}/k

P 71N
/:1/6;'” i=1%ij

5
By (n' S, 0) -
Return: (,30,,51,---/6;))

Code Example 17: Pseudocode for backfitting linear models. Assume we make at
least one pass through the until loop. Recall from Chapter 1 that centering the
data does not change the 3; this way the intercept only have to be calculated once,

at the end.

This includes the linear model as a special case, where f(x;) = 5,x;, but it’s clearly

J
more general, because the f;s can be pretty arbitrary nonlinear functions. The idea
is still that each input feature makes a separate contribution to the response, and
these just add up, but these contributions don’t have to be strictly proportional to

the inputs. We do need to add a restriction to make it identifiable; without loss of
generality, say that E[Y] = a and E [f] (X; )] =03
Additive models keep a lot of the nice properties of linear models, but are more

flexible. One of the nice things about linear models is that they are fairly straightfor-
ward to interpret: if you want to know how the prediction changes as you change x;,

you just need to know 3. The partial response function f; plays the same role in an
additive model: of course the change in prediction from changing x; will generally
depend on the level x; had before perturbation, but since that’s also true of reality
that’s really a feature rather than a bug. It’s true that a set of plots for f;s takes more
room than a table of 3 S but it’s also nicer to look at, conveys more information,
and imposes fewer systematic distortions on the data.

Now, one of the nice properties which additive models share with linear ones has

3To see why we need to do this, imagine the simple case where p = 2. If we add constants ¢; to f;
and ¢, to f;, but subtract ¢; + ¢, from «, then nothing observable has changed about the model. This
degeneracy or lack of identifiability is a little like the way collinearity keeps us from defining true slopes
in linear regression. But it’s less harmful than collinearity because we really can fix it by the convention
given above.



158 CHAPTER 8. ADDITIVE MODELS

Given: z X p inputs X
n X 1 responses y
small tolerance & >0
one-dimensional smoother .

a\(_n_lzzl:lyi
f]«—Oforjellp
until (all |f] - g]-| <8{
forkel:p{
h ~
yf ):yi _Z,';ékfj(xif)
g <—§”(y(/€)~x.k)
8 < & — n! Zle e (%)
foe &
}
} U
Return: (a,fl,---fp)

Code Example 18: Pseudo-code for backfitting additive models. Notice the extra
step, as compared to backfitting linear models, which keeps each partial response
function centered.

to do with the partial residuals. Defining

YO =Y —|a+> fi(x;) (8.9)
j#k

a little algebra along the lines of the last section shows that
E[YOIX, =x] =filx) (8.10)

If we knew how to estimate arbitrary one-dimensional regressions, we could now
use backfitting to estimate additive models. But we have spent a lot of time talking
about how to use smoothers to fit one-dimensional regressions! We could use nearest
neighbors, or splines, or kernels, or local-linear regression, or anything else we feel
like substituting here.

Our new, improved backfitting algorithm in Example 18. Once again, while it’s
not obvious that this converges, it does converge. Also, the backfitting procedure
works well with some complications or refinements of the additive model. If we
know the function form of one or another of the f;, we can fit those parametrically
(rather than with the smoother) at the appropriate points in the loop. (This would
be a semiparametric model.) If we think that there is an interaction between x; and
x;,, rather than their making separate additive contributions, we can smooth them
together; etc.
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There are actually two packages standard packages for fitting additive models in
R: gam and mgcv. Both have commands called gam, which fit generalized additive
models — the generalization is to use the additive model for things like the probabil-
ities of categorical responses, rather than the response variable itself. If that sounds
obscure right now, don’t worry — we’ll come back to this after we’ve looked at gen-
eralized linear models. The last section of this chapter illustrates using these packages
to fit an additive model.

8.3 The Curse of Dimensionality

Before illustrating how additive models work in practice, let’s talk about why we’d
want to use them. So far, we have looked at two extremes for regression models;
additive models are somewhere in between.

On the one hand, we had linear regression, which is a parametric method (with
p + 1) parameters. Its weakness is that the true regression function r is hardly ever
linear, so even with infinite data it will always make systematic mistakes in its predic-
tions — there’s always some approximation bias, bigger or smaller depending on how
non-linear 7 is. The strength of linear regression is that it converges very quickly as
we get more data. Generally speaking,

MSElincar = 02 + Ainear + O(n_l) (811)

where the first term is the intrinsic noise around the true regression function, the
second term is the (squared) approximation bias, and the last term is the estimation
variance. Notice that the rate at which the estimation variance shrinks doesn’t de-
pend on p — factors like that are all absorbed into the big O.* Other parametric
models generally converge at the same rate.

At the other extreme, we’ve seen a number of completely non-parametric regres-
sion methods, such as kernel regression, local polynomials, k-nearest neighbors, etc.
Here the limiting approximation bias is actually zero, at least for any reasonable re-
gression function r. The problem is that they converge more slowly, because we need
to use the data not just to figure out the coefficients of a parametric model, but the
sheer shape of the regression function. We saw in Chapter 4 that the mean-squared
error of kernel regression in one dimension is o> + O(n~*°). Splines, k-nearest-
neighbors (with growing k), etc., all attain the same rate. But in p dimensions, this
becomes (Wasserman, 2006, §5.12)

MSE

nonpara

02 = O(n~*#*9) (8.12)

There’s no ultimate approximation bias term here. Why does the rate depend on
p? Well, to give a very hand-wavy explanation, think of the smoothing methods,
where 7(x) is an average over y; for X; near x. In a p dimensional space, the volume
within € of X is O(e?), so to get the same density (points per unit volume) around X
takes exponentially more data as p grows. The appearance of the 4s is a little more

#See Appendix A you are not familiar with “big O” notation.
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mysterious, but can be resolved from an error analysis of the kind we did for kernel
density estimation in Chapter 4°.

For p = 1, the non-parametric rate is O(n~*/), which is of course slower than
O(n™1), but not all that much, and the improved bias usually more than makes up
for it. But as p grows, the non-parametric rate gets slower and slower, and the fully
non-parametric estimate more and more imprecise, yielding the infamous curse of
dimensionality. For p = 100, say, we get a rate of O(n~'/2%), which is not very good
at all. Said another way, to get the same precision with p inputs that 7 data points
gives us with one input takes 2(*+#)/> data points. For p = 100, this is 72°%, which
tells us that matching the error of » = 100 one-dimensional observations requires
O(4 x 10*!) hundred-dimensional observations.

So completely unstructured non-parametric regressions won’t work very well in
high dimensions, at least not with plausible amounts of data. The trouble is that
there are just too many possible high-dimensional functions, and seeing only a trillion
points from the function doesn’t pin down its shape very well at all.

This is where additive models come in. Not every regression function is additive,
so they have, even asymptotically, some approximation bias. But we can estimate
each f; by asimple one-dimensional smoothing, which converges at O(n=**), almost
as good as the parametric rate. So overall

MSEadditivc - 02 = 4additive + O(n _4/5) (8 . 13)

Since linear models are a sub-class of additive models, 4, 4;ve < 4y,,,- From a purely
predictive point of view, the only time to prefer linear models to additive models is
when 7 is so small that O(n*°) — O(n~") exceeds this difference in approximation
biases; eventually the additive model will be more accurate.

>More exactly, remember that in one dimension, the bias of a kernel smoother with bandwidth 5 is
O(h?), and the variance is O(1/nh), because only samples falling in an interval about / across contribute
to the prediction at any one point, and when 5 is small, the number of such samples is proportional to
nh. Adding bias squared to variance gives an error of O(h*)+ O(1/nh), solving for the best bandwidth
gives hop = O(n~1/%), and the total error is then O(~*/%). Suppose for the moment that in p dimensions
we use the same bandwidth along each dimension. (We get the same result with more work if we let each
dimension have its own bandwidth.) The bias is still O(h?), because the Taylor expansion which gives it to
us still goes through. But now only samples falling into a region of volume O(4%) around x contribute to
the prediction at x, so the variance is O(1/nh%). The best bandwidth is now Pope = O(n~1/(7+49), yielding
an error of O(n~#/(P+4) a5 promised.

Unless the best additive approximation to 7 really is linear; then the linear model has no more bias
and better variance.
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8.4 Example: California House Prices Revisited
As an example, we’ll revisit the California house price data from the homework.
calif = read.table("~/teaching/402/hw/01/cadata.dat",header=TRUE)

Fitting a linear model is very fast (about 1/5 of a second on my laptop). Here are the
summary statistics:

> linfit = Im(log(MedianHouseValue) ~ ., data=calif)
> print (summary (linfit),signif.stars=FALSE)

Call:
Im(formula = log(MedianHouseValue) ~ ., data = calif)

Residuals:
Min 10 Median 30 Max
-2.517974 -0.203797 0.001589 0.194947 3.464100

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -1.180e+01 3.059e-01 -38.570 < 2e-16
MedianIncome 1.782e-01 1.639e-03 108.753 < 2e-16
MedianHouseAge 3.261e-03 2.111e-04 15.446 < 2e-16
TotalRooms -3.186e-05 3.855e-06 -8.265 < 2e-16
TotalBedrooms 4.798e-04 3.375e-05 14.215 < 2e-16
Population -1.725e-04 ©5.277e-06 -32.687 < 2e-16
Households 2.493e-04 3.675e-05 6.783 1.21e-11
Latitude -2.801e-01 3.293e-03 -85.078 < 2e-16
Longitude -2.762e-01 3.487e-03 -79.212 < 2e-16

Residual standard error: 0.34 on 20631 degrees of freedom
Multiple R-squared: 0.6432,Adjusted R-squared: 0.643
F-statistic: 4648 on 8 and 20631 DF, p-value: < 2.2e-16

Figure 8.1 plots the predicted prices, £2 standard errors, against the actual prices.
The predictions are not all that accurate — the RMS residual is 0.340 on the log scale
(i-e., 41%), and only 3.3% of the actual prices fall within the prediction bands.” On
the other hand, they are quite precise, with the RMS of the standard errors for the
predictions being only 0.0071 (i.e., 0.71%). This linear model is pretty thoroughly
converged, and thinks it knows what’s going on.

"You might worry that the top-coding of the prices — all values over $500,000 are recorded as $500,001
— means we’re not being fair to the model. After all, we see $500,001 and the model predicts $600,000, the
prediction might be right — it’s certainly right that it’s over $500,000. To deal with this, I tried top-coding
the predicted values, but it didn’t change much — the RMS error for the linear model only went down to
0.332, and it was similarly inconsequential for the others. Presumably this is because only about 5% of the
records are top-coded.
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predictions = predict (linfit, se.fit=TRUE)
plot (calif$MedianHouseValue, exp (predictions$fit), cex=0.1,
xlab="Actual price",ylab="Predicted")
segments (calif$MedianHouseValue, exp (predictions$fit-2+«predictions$se.fit),
calif$MedianHouseValue, exp (predictions$fit+2+predictionsS$se.fit),
col="grey")
abline (a=0,b=1, 1ty=2)

Figure 8.1: Actual median house values (horizontal axis) versus those predicted by
the linear model (black dots), plus or minus two standard errors (grey bars). The
dashed line shows where actual and predicted prices would be equal. Note that I've
exponentiated the predictions so that they’re comparable to the original values.
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Next, we’ll fit an additive model, using the gam function from the mgcv package;
this automatically sets the bandwidths using a fast approximation to leave-one-out
CV called generalized cross-validation, or GCV.

> require (mgcv)
> system.time (addfit <- gam(log(MedianHouseValue) ~ s (MedianIncome)
+ s (MedianHouseAge) + s (TotalRooms)
+ s (TotalBedrooms) + s (Population) + s (Households)
+ s (Latitude) + s (Longitude), data=calif))
user system elapsed
41.144 1.929 44.487

(That is, it took almost a minute in total to run this.) The s () terms in the gam
formula indicate which terms are to be smoothed — if we wanted particular para-
metric forms for some variables, we could do that as well. (Unfortunately we can’t
just write MedianHouseValue ~ s (.), we have to list all the variables on the
right-hand side.) The smoothing here is done by splines, and there are lots of options
for controlling the splines, if you know what you’re doing.

Figure 8.2 compares the predicted to the actual responses. The RMS error has
improved (0.29 on the log scale, or 33%, with 9.5% of observations falling with +2
standard errors of their fitted values), at only a fairly modest cost in the claimed
precision (the RMS standard error of prediction is 0.016, or 1.6%). Figure 8.3 shows
the partial response functions.

It makes little sense to have latitude and longitude make separate additive contri-
butions here; presumably they interact. We can just smooth them together®:

addfit2 <- gam(log(MedianHouseValue) ~ s (MedianIncome) + s (MedianHouseAge)
+ s (TotalRooms) +s(TotalBedrooms) + s (Population) + s (Households)
+ s (Longitude,Latitude), data=calif)

This gives an RMS error of £31% (with 11% coverage), with no decrease in the pre-
cision of the predictions (at least to two figures).

Figures 8.5 and 8.6 show two different views of the joint smoothing of longitude
and latitude. In the perspective plot, it’s quite clear that price increases specifically
towards the coast, and even more specifically towards the great coastal cities. In the
contour plot, one sees more clearly an inward bulge of a negative, but not too very
negative, contour line (between -122 and -120 longitude) which embraces Napa, Sacra-
mento, and some related areas, which are comparatively more developed and more
expensive than the rest of central California, and so more expensive than one would
expect based on their distance from the coast and San Francisco.

The fact that the prediction intervals have such bad coverage is partly due to their
being based on Gaussian approximations. Still, £2 standard errors should cover at
least 25% of observations’, which is manifestly failing here. This suggests substantial
remaining bias. One of the standard strategies for trying to reduce such bias is to

8Tf the two variables which interact are on very different scales, it’s better to smooth them witha te ()
term than an s () term — see help (gam.models) — but here they are comparable.
9By Chebyshev’s inequality: P(|X —E[X]| > a0) < 1/a?, where o is the standard deviation of X .
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predictions = predict (addfit, se.fit=TRUE)
plot (calif$MedianHouseValue, exp (predictions$fit), cex=0.1,
xlab="Actual price",ylab="Predicted")
segments (calif$MedianHouseValue, exp (predictions$fit-2+«predictions$se.fit),
calif$MedianHouseValue, exp (predictions$fit+2+predictionsS$se.fit),
col="grey")
abline (a=0,b=1, 1ty=2)

Figure 8.2: Actual versus predicted prices for the additive model, as in Figure 8.1.
Note that one call to the predict function produces both a fitted value for each
point, and a standard error for that prediction. (There is no newdata argument in
this call to predict, so it defaults to the training data used to learn addfit, which
in this case is what we want.)
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plot (addfit, scale=0, se=2, shade=TRUE, resid=TRUE, pages=1)

Figure 8.3: The estimated partial response functions for the additive model, with
a shaded region showing +2 standard errors, and dots for the actual partial residu-
als. The tick marks along the horizontal axis show the observed values of the input
variables (a rug plot); note that the error bars are wider where there are fewer ob-
servations. Setting pages=0 (the default) would produce eight separate plots, with
the user prompted to cycle through them. Setting scale=0 gives each plot its own
vertical scale; the default is to force them to share the same one. Finally, note that
here the vertical scale is logarithmic.
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plot (addfit2, scale=0, se=2, shade=TRUE, resid=TRUE, pages=1)

Figure 8.4: Partial response functions and partial residuals for add£it 2, as in Figure
8.3. See subsequent figures for the joint smoothing of longitude and latitude, which
here is an illegible mess. See help (plot .gam) for the plotting options used here.
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plot (addfit2, select=7,phi=60, pers=TRUE)

Figure 8.5: The result of the joint smoothing of longitude and latitude.
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plot (addfit2, select=7, se=FALSE)

Figure 8.6: The result of the joint smoothing of longitude and latitude. Setting
se=TRUE, the default, adds standard errors for the contour lines in multiple colors.
Again, note that these are log units.
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allow more interactions. For instance, we could allow the total number of rooms
and bedrooms in each census tract to interact with the total number of inhabitants
and/or households.

We could, of course, just use a completely unrestricted nonparametric regression
— going to the opposite extreme from the linear model. This however runs into
purely computational obstacles. When I just throw npreg at the problem,

calif.bw <- npregbw(log(MedianHouseValue) ~., data=calif,type="11")

R is still working after ten hours of processor time.

8.5 Closing Modeling Advice

With modern computing power, there are very few situations in which it is actually
better to do linear regression than to fit an additive model. In fact, there seem to be
only two good reasons to prefer linear models.

1. Our data analysis is guided by a credible scientific theory which asserts linear
relationships among the variables we measure (not others, for which our observ-
ables serve as imperfect proxies).

2. Our data set is so massive that either the extra processing time, or the extra
computer memory, needed to fit and store an additive rather than a linear
model is prohibitive.

Even when the first reason applies, and we have good reasons to believe a linear the-
ory, the truly scientific thing to do would be to check linearity, by fitting a flexible
non-linear model and seeing if it looks close to linear. (We will see formal tests based
on this idea in Chapter 10.) Even when the second reason applies, we would like to
know how much bias we’re introducing by using linear predictors, which we could
do by randomly selecting a subset of the data which is small enough for us to manage,
and fitting an additive model.

In the vast majority of cases when users of statistical software fit linear models,
neither of these reasons applies: theory doesn’t tell us to expect linearity, and our
machines don’t compel us to use it. Linear regression is then employed for no better
reason than that users know how to type 1m but not gam. Yo# now know better, and
can spread the word.

8.6 Further Reading

Simon Wood, who wrote the mgcv package, has a very nice book about additive
models and their generalizations, Wood (2006); at this level it’s your best source for
turther information. Buja et al. (1989) is a thorough theoretical treatment.

Ezekiel (1924) seems to be the first publication advocating the use of additive
models as a general method, which he called “curivilinear multiple correlation”. His
paper was complete with worked examples on simulated data (with known answers)
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Figure 8.7: Maps of real or fitted prices: actual, top left; linear model, top right; first
additive model, bottom right; additive model with interaction, bottom left. Cate-
gories are deciles of the actual prices; since those are the same for all four plots, it
would have been nicer to make one larger legend, but that was beyond my graphical

abilities.
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and real data (from economics)'®. He was explicit that any reasonable smoothing or
regression technique could be used to determine the partial response functions. He
also gave a successive-approximation algorithm for finding partial response functions:
start with an initial guess about all the partial responses; plot all the partial residuals;
refine the partial responses simultaneously; repeat. This differs from back-fitting in
that the partial response functions are updating in parallel within each cycle, not one
after the other. This is a subtle difference, and Ezekiel’s method will often work, but
can run into trouble with correlated predictor variables, when back-fitting will not.

10«Each of these curves illustrates and substantiates conclusions reached by theoretical economic analy-
sis. Equally important, they provide definite quantitative statements of the relationships. The method of
...curvilinear multiple correlation enable[s] us to use the favorite tool of the economist, caeteris paribus,
in the analysis of actual happenings equally as well as in the intricacies of theoretical reasoning” (p. 453).



