
Chapter 22

Graphical Causal Models

22.1 Causation and Counterfactuals
Take a piece of cotton, say an old rag. Apply flame to it; the cotton burns. We say
the fire caused the cotton to burn. The flame is certainly correlated with the cotton
burning, but, as we all know, correlation is not causation (Figure 22.1). Perhaps every
time we set rags on fire we handle them with heavy protective gloves; the gloves don’t
make the cotton burn, but the statistical dependence is strong. So what is causation?

We do not have to settle 2500 years (or more) of argument among philosophers
and scientists. For our purposes, it’s enough to realize that the concept has a counter-
factual component: if, contrary to fact, the flame had not been applied to the rag,
then the rag would not have burned1. On the other hand, the fire makes the cotton
burn whether we are wearing protective gloves or not.

To say it a somewhat different way, the distributions we observe in the world
are the outcome of complicated stochastic processes. The mechanisms which set
the value of one variable inter-lock with those which set other variables. When we
make a probabilistic prediction by conditioning — whether we predict E[Y |X = x]
or Pr (Y |X = x) or something more complicated — we are just filtering the output
of those mechanisms, picking out the cases where they happen to have set X to the
value x, and looking at what goes along with that.

When we make a causal prediction, we want to know what would happen if the
usual mechanisms controlling X were suspended and it was set to x. How would
this change propagate to the other variables? What distribution would result for Y ?
This is often, perhaps even usually, what people really want to know from a data
analysis, and they settle for statistical prediction either because they think it is causal
prediction, or for lack of a better alternative.

Causal inference is the undertaking of trying to answer causal questions from
empirical data. Its fundamental difficulty is that we are trying to derive counter-
factual conclusions with only factual premises. As a matter of habit, we come to

1If you immediately start thinking about quibbles, like “What if we hadn’t applied the flame, but the
rag was struck by lightning?”, then you may have what it takes to be a philosopher.
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434 CHAPTER 22. GRAPHICAL CAUSAL MODELS

Figure 22.1: “Correlation doesn’t imply causation, but it does waggle its eyebrows
suggestively and gesture furtively while mouthing ‘look over there”’ (Image and text
copyright by Randall Munroe, used here under a Creative Commons attribution-
noncommercial license; see http://xkcd.com/552/.)

expect cotton to burn when we apply flames. We might even say, on the basis of
purely statistical evidence, that the world has this habit. But as a matter of pure logic,
no amount of evidence about what did happen can compel beliefs about what would
have happened under non-existent circumstances2. (For all my data shows, all the
rags I burn just so happened to be on the verge of spontaneously bursting into flames
anyway.) We must supply some counter-factual or causal premise, linking what we
see to what we could have seen, to derive causal conclusions.

One of our goals, then, in causal inference will be to make the causal premises as
weak and general as possible, so as to limit what we take on faith.

22.2 Causal Graphical Models
We will need a formalism for representing causal relations. It will not surprise you
by now to learn that these will be graphical models. We will in fact use DAG models
from last time, with “parent” interpreted to mean “directly causes”. These will be
causal graphical models, or graphical causal models.3

We make the following assumptions.

1. There is some directed acyclic graph G representing the relations of causation
among the our variables.

2The first person to really recognize this seems to have been the medieval Muslim theologian and anti-
philosopher al Ghazali (1100/1997). (See Kogan (1985) for some of the history.) Very similar arguments
were revived centuries later by Hume (1739); whether there was some line of intellectual descent linking
them — that is, any causal connection — I don’t know.

3Because DAG models have joint distributions which factor according to the graph, we can always
write them in the form of a set of equations, as Xi = fi (Xparents(i )) + ✏i , with the catch that the noise ✏i
is not necessarily independent of Xi ’s parents. This is what is known, in many of the social sciences, as a
structural equation model. So those are, strictly, a sub-class of DAG models. They are also often used to
represent causal structure.
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2. The Causal Markov condition: The joint distribution of the variables obeys
the Markov property on G.

3. Faithfulness: The joint distribution has all of the conditional independence
relations implied by the causal Markov property, and only those conditional
independence relations.

The point of the faithfulness condition is to rule out “conspiracies among the param-
eters”, where, say, two causes of a common effect, which would typically be depen-
dent conditional on that effect, have their impact on the joint effect and their own
distributions matched just so exactly that they remain conditionally independent.

22.2.1 Calculating the “effects of causes”
Let’s fix two sub-sets of variables in the graph, XC and XE . (Assume they don’t over-
lap, and call everything else XN .) If we want to make a probabilistic prediction for
XE ’s value when Xc takes a particular value, xc , that’s the conditional distribution,
Pr
�
XE |Xc = xc
�
, and we saw last time how to calculate that using the graph. Con-

ceptually, this amounts to selecting, out of the whole population or ensemble, the
sub-population or sub-ensemble where Xc = xc , and accepting whatever other behav-
ior may go along with that.

Now suppose we want to ask what the effect would be, causally, of setting XC
to a particular value xc . We represent this by “doing surgery on the graph”: we
(i) eliminate any arrows coming in to nodes in Xc , (ii) fix their values to xc , and
(iii) calculate the resulting distribution for XE in the new graph. By steps (i) and
(ii), we imagine suspending or switching off the mechanisms which ordinarily set
Xc . The other mechanisms in the assemblage are left alone, however, and so step (iii)
propagates the fixed values of Xc through them. We are not selecting a sub-population,
but producing a new one.

If setting Xc to different values, say xc and x 0c , leads to different distributions for
XE , then we say that Xc has an effect on XE — or, slightly redundantly, has a causal
effect on XE . Sometimes4 “the effect of switching from xc to x 0c ” specifically refers to
a change in the expected value of XE , but since profoundly different distributions can
have the same mean, this seems needlessly restrictive.5 If one is interested in average
effects of this sort, they are computed by the same procedure.

It is convenient to have a short-hand notation for this procedure of causal condi-
tioning. One more-or-less standard idea, introduced by Judea Pearl, is to introduce a
d o operator which encloses the conditioning variable and its value. That is,

Pr
�
XE |Xc = xc
�

(22.1)

is probabilistic conditioning, or selecting a sub-ensemble from the old mechanisms;
but

Pr
�
XE |d o(Xc = xc )
�

(22.2)

4Especially in economics.
5Economists are also fond of the horribly misleading usage of talking about “an X effect” or “the effect

of X ” when they mean the regression coefficient of X . Don’t do this.
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is causal conditioning, or producing a new ensemble. Sometimes one sees this written
as Pr
�
XE |Xc=̂xc
�
, or even Pr
�
XE | bxc
�
. I am actually fond of the d o notation and will

use it.
Suppose that Pr

�
XE |Xc = xc
�
= Pr
�
XE |d o(Xc = xc )
�
. This would be extremely

convenient for causal inference. The conditional distribution on the right is the
causal, counter-factual distribution which tells us what would happen if xc was im-
posed. The distribution on the left is the ordinary probabilistic distribution we have
spent years learning how to estimate from data. When do they coincide?

One time when they would is if Xc contains all the parents of XE , and none
of its descendants. Then, by the Markov property, XE is independent of all other
variables given XC , and removing the arrows into XC will not change that, or the
conditional distribution of XE given its parents. Doing causal inference for other
choices of XC will demand other conditional independence relations implied by the
Markov property. This is the subject of Chapter 23.

22.2.2 Back to Teeth
Let us return to the example of Figure 21.4, and consider the relationship between
exposure to asbestos and the staining of teeth. In the model depicted by that figure,
the joint distribution factors as6

p(Yellow teeth,Smoking,Asbestos,Tar in lungs,Cancer)
= p(Smoking)p(Asbestos) (22.3)
⇥p(Tar in lungs|Smoking)
⇥p(Yellow teeth|Smoking)
⇥p(Cancer|Asbestos,Tar in lungs)

As we saw, whether or not someone’s teeth are yellow (in this model) is uncondi-
tionally independent of asbestos exposure, but conditionally dependent on asbestos,
given whether or not they have cancer. A logistic regression of tooth color on as-
bestos would show a non-zero coefficient, after “controlling for” cancer. This coeffi-
cient would become significant with enough data. The usual interpretation of this co-
efficient would be to say that the log-odds of yellow teeth increase by so much for each
one unit increase in exposure to asbestos, “other variables being held equal”.7 But to
see the actual causal effect of increasing exposure to asbestos by one unit, we’d want to
compare p(Yellow teeth|d o(Asbestos= a)) to p(Yellow teeth|d o(Asbestos= a+1)),
and it’s easy to check (Exercise 1) that these two distributions have to be the same.
In this case, because asbestos is exogenous, one will in fact get the same result for
p(Yellow teeth|d o(Asbestos= a) and for p(Yellow teeth|Asbestos= a).

For a more substantial example, consider Figure 22.28 The question of interest
6I am grateful to Janet E. Rosenbaum for pointing out an error in an earlier version of this example.
7Nothing hinges on this being a logistic regression, similar interpretations are given to all the other

standard models.
8Based on de Oliveira et al. (2010), and the discussion of this

paper by Chris Blattman (http://chrisblattman.com/2010/06/01/
does-brushing-your-teeth-lower-cardiovascular-disease/).
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Frequency of toohbrushing

Gum disease
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Figure 22.2: Graphical model illustrating hypothetical pathways linking brushing
your teeth to not getting heart disease.

here is whether regular brushing and flossing actually prevents heart-disease. The
mechanism by which it might do so is as follows: brushing is known to make it less
likely for people to get gum disease. When you have gum disease, your gums are sub-
ject to constant, low-level inflammation. This inflammation (which can be measured
through various messenger chemicals of the immune system) is thought to increase
the risk of heart disease. Against this, people who are generally health-conscious are
likely to brush regularly, and to take other actions, like regularly exercising and con-
trolling their diets, which also make them less likely to get heart disease. In this case,
if we were to manipulate whether people brush their teeth9, we would shift the graph
from Figure 22.2 to Figure 22.3, and we would have

p(Heart disease|Brushing= b ) 6= p(Heart disease|d o(Brushing= b )) (22.4)

9Hopefully, by ensuring that everyone brushes, rather than keeping people from brushing.
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Figure 22.3: The previous graphical model, “surgically” altered to reflect a manipula-
tion (d o) of brushing.
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X Z Y

Figure 22.4: Four DAGs for three linked variables. The first two (a and b ) are called
chains; c is a fork; d is a collider. If these were the whole of the graph, we would
have X 6 |= Y and X |= Y |Z . For the collider, however, we would have X |= Y while
X 6 |= Y |Z .

22.3 Conditional Independence and d -Separation
It is clearly very important to us to be able to deduce when two sets of variables
are conditionally independent of each other given a third. One of the great uses of
DAGs is that they give us a fairly simple criterion for this, in terms of the graph
itself. All distributions which conform to a given DAG share a common set of con-
ditional independence relations, implied by the Markov property, no matter what
their parameters or the form of the distributions. Faithful distributions have no other
conditional independence relations. Let us think this through.

Our starting point is that while causal influence flows one way through the graph,
along the directions of arrows from parents to children, statistical information can
flow in either direction. We can certainly make inferences about an effect from its
causes, but we can equally make inferences about causes from their effects. It might be
harder to actually do the calculations10, and we might be left with more uncertainty,
but we could do it.

While we can do inference in either direction across any one edge, we do have to
worry about whether we can propagate this information further. Consider the four
graphs in Figure 22.4. In every case, we condition on X , which acts as the source of
information. In the first three cases, we can (in general) propagate the information
from X to Z to Y — the Markov property tells us that Y is independent of its non-
descendants given its parents, but in none of those cases does that make X and Y
independent. In the last graph, however, what’s called a collider11, we cannot prop-
agate the information, because Y has no parents, and X is not its descendant, hence
they are independent. We learn about Z from X , but this doesn’t tell us anything
about Z ’s other cause, Y .

10Janzing (2007) makes the very interesting suggestion that the direction of causality can be discovered
by using this — roughly speaking, that if X |Y is much harder to compute than is Y |X , we should presume
that X ! Y rather than the other way around.

11Because two incoming arrows “collide” there.
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All of this flips around when we condition on the intermediate variable (Z in
Figure 22.4). The chains (Figures 22.4a and b ), conditioning on the intermediate
variable blocks the flow of information from X to Y — we learn nothing more about
Y from X and Z than from Z alone, at least not along this path. This is also true
of the fork (Figure 22.4c ) — conditional on their common cause, the two effects are
uninformative about each other. But in a collider, conditioning on the common effect
Z makes X and Y dependent on each other, as we’ve seen before. In fact, if we don’t
condition on Z , but do condition on a descendant of Z , we also create dependence
between Z ’s parents.

We are now in a position to work out conditional independence relations. We
pick our two favorite variables, X and Y , and condition them both on some third set
of variables S. If S blocks every undirected path12 from X to Y , then they must be
conditionally independent given S. An unblocked path is also called active. A path
is active when every variable along the path is active; if even one variable is blocked
by S, the whole path is blocked. A variable Z along a path is active, conditioning on
S, if

1. Z is a collider along the path, and in S; or,

2. Z is a descendant of a collider, and in S; or

3. Z is not a collider, and not in S.

Turned around, Z is blocked or de-activated by conditioning on S if

1. Z is a non-collider and in S; or

2. Z is collider, and neither Z nor any of its descendants is in S

In words, S blocks a path when it blocks the flow of information by conditioning
on the middle node in a chain or fork, and doesn’t create dependence by conditioning
on the middle node in a collider (or the descendant of a collider). Only one node in a
path must be blocked to block the whole path. When S blocks all the paths between
X and Y , we say it d-separates them13. A collection of variables U is d-separated
from another collection V by S if every X 2 U and Y 2V are d-separated.

In every distribution which obeys the Markov property, d-separation implies con-
ditional independence. If the distribution is also faithful to the graph, then condi-
tional independence also implies d-separation14. In a faithful causal graphical model,
then, conditional independence is exactly the same as blocking the flow of informa-
tion across the graph. This turns out to be the single most important fact enabling
causal inference; we will see how that works next time.

12Whenever I talk about undirected paths, I mean paths without cycles.
13The “d” stands for “directed”
14We will not prove this, though I hope I have made it plausible. You can find demonstrations in Spirtes

et al. (2001); Pearl (2000); Lauritzen (1996).



22.3. CONDITIONAL INDEPENDENCE AND D -SEPARATION 441
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Figure 22.5: Example DAG used to illustrate d-separation.

22.3.1 D-Separation Illustrated
The discussion of d-separation has been rather abstract, and perhaps confusing for
that reason. Figure 22.5 shows a DAG which might make this clearer and more
concrete15.

If we make the conditioning set S the empty set, that is, we condition on nothing,
we “block” paths which pass through colliders. For instance, there are three exoge-
nous variables in the graph, X2,X3 and X5. Because they have no parents, any path
from one to another must go over a collider (see exercises). If we do not condition on
anything, therefore, we find that the exogenous variables are d-separated and thus in-
dependent. Since X3 is not on any path linking X2 and X5, or descended from a node
on any such path, if we condition only on X3, then X2 and X5 are still d-separated, so
X2 |= X5|X3. There are two paths linking X3 to X5: X3 ! X1  X2 ! X4  X5, and

15I am grateful to Donald Schoolmaster, Jr., for pointing out errors in an earlier version of this example.
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X3! X1! Y  X5. Conditioning on X2 blocks the first path (since X2 is part of it,
but is a fork), and also blocks the second path (since X2 is not part of it, and Y is a
blocked collider). Thus, X3 |= X5|X2. Similarly, X3 |= X2|X5 (Exercise 4).

For a slightly more interesting example, let’s look at the relation between X3 and
Y . There are two paths here: X3!X1! Y , and X3!X1 X2!X4 X5! Y . If
we condition on nothing, the first path, which is a simple chain, is open, so X3 and Y
are d-connected and dependent. If we condition on X1, we block the first path. X1 is
a collider on the second path, so conditioning on it makes it active. However, there
is a second collider, X4, along this path, and just conditioning on X1 does not activate
the second collider, so the path as a whole remains blocked.

Y 6 |= X3 (22.5)
Y |= X3|X1 (22.6)

To activate the second path, we can condition on X1 and either X4 (a collider
along that path) or on X6 (a descendant of a collider) or on both:

Y 6 |= X3|X1,X4 (22.7)
Y 6 |= X3|X1,X6 (22.8)
Y 6 |= X3|X1,X4,X6 (22.9)

Conditioning on X4 and/or X6 does not activate the X3 ! X1 ! Y path, but it’s
enough for there to be one active path to create dependence.

To block the second path again, after having opened it in one of these ways, we
can condition on X2 (since it is a fork along that path, and conditioning on a fork
blocks it), or on X5 (also a fork), or on both X2 and X5. So

Y |= X3|X1,X2 (22.10)
Y |= X3|X1,X5 (22.11)
Y |= X3|X1,X2,X5 (22.12)
Y |= X3|X1,X2,X4 (22.13)
Y |= X3|X1,X2,X6 (22.14)
Y |= X3|X1,X2,X5,X6 (22.15)

etc., etc.
Let’s look at the relationship between X4 and Y . X4 is not an ancestor of Y , or a

descendant of it, but they do share common ancestors, X5 and X2. Unconditionally,
Y and X4 are dependent, both through the path going X4  X5 ! Y , and through
that going X4 X2!X1! Y . Along both paths, the exogenous variables are forks,
so not conditioning on them leaves the path unblocked. X4 and Y become d-separated
when we condition on X5 and X2.

X6 and X3 have no common ancestors. Unconditionally, they should be inde-
pendent, and indeed they are: the two paths are X6  X4  X2 ! X1  X3, and
X6  X4  X5 ! Y  X1  X3. Both paths contain a single collider (X1 and Y ,
respectively), so if we do not condition on them the paths are blocked and X6 and X3
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are independent. If we condition on either Y or X1 (or both), however, we unblock
the paths, and X6 and X3 become d-connected, hence dependent. To get back to d-
separation while conditioning on Y , we must also condition on X4 or X5, or both.
To get d-separation while conditioning on X1, we must also condition on X4, or on
X2, or on X4 and X2. If we condition on both X1 and Y and want d-separation, we
could just add conditioning on X4, or we could condition on X2 and X5, or all three.

If the abstract variables are insufficiently concrete, consider reading them as fol-
lows:

Y , Grade in 402
X1 , Effort spent on 402
X2 , Enjoyment of statistics
X3 , Workload this semester
X4 , Quality of work in 401
X5 , Amount learned in 401
X6 , Grade in 401

Pretending, for the sake of illustration, that this is accurate, how heavy your work-
load is this semester (X3) would predict, or rather retrodict, your grade in modern
regression last semester (X6), once we control for how much effort you put into data
analysis this semester (X1). Changing your workload this semester would not, how-
ever, reach backwards in time to raise or lower your grade in regression.

22.3.2 Linear Graphical Models and Path Coefficients
We began our discussion of graphical models with factor analysis as our starting
point. Factor models are a special case of linear (directed) graphical models, a.k.a.
path models16 As with factor models, in the larger class we typically center all the
variables (so they have expectation zero) and scale them (so they have variance 1). In
factor models, the variables were split into two sets, the factors and the observables,
and all the arrows went from factors to observables. In the more general case, we do
not necessarily have this distinction, but we still assume the arrows from a directed
acyclic graph. The conditional expectation of each variable is a linear combination
of the values of its parents:

E
î

Xi |Xparents(i )

ó
=
X

j2parents(i )
wj i Xj (22.16)

just as in a factor model. In a factor model, the coefficients wj i were the factor load-
ings. More generally, they are called path coefficients.

The path coefficients determine all of the correlations between variables in the
model. To find the correlation between Xi and Xj , we proceed as follows:

• Find all of the undirected paths between Xi and Xj .

16Some people use the phrase “structural equation models” for such models exclusively.
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• Discard all of the paths which go through colliders.

• For each remaining path, multiply all the path coefficients along the path.

• Sum up these products over paths.

These rules were introduced by the great geneticist and mathematical biologist Sewall
Wright in the early 20th century, in a series of papers culminating in Wright (1934)17

These “Wright path rules” often seem mysterious, particularly the bit where paths
with colliders are thrown out. But from our perspective, we can see that what Wright
is doing is finding all of the unblocked paths between Xi and Xj . Each path is a channel
along which information (here, correlation) can flow, and so we add across channels.

It is frequent, and customary, to assume that all of the variables are Gaussian. (We
saw this in factor models as well.) With this extra assumption, the joint distribution
of all the variables is a multivariate Gaussian, and the correlation matrix (which we
find from the path coefficients) gives us the joint distribution.

If we want to find conditional correlations, corr(Xi ,Xj |Xk ,Xl , . . .), we still sum
up over the unblocked paths. If we have avoided conditioning on colliders, then
this is just a matter of dropping the now-blocked paths from the sum. If on the
other hand we have conditioned on a collider, that path does become active (unless
blocked elsewhere), and we in fact need to modify the path weights. Specifically, we
need to work out the correlation induced between the two parents of the collider,
by conditioning on that collider. This can be calculated from the path weights, and
some fairly tedious algebra18. The important thing is to remember that the rule of
d-separation still applies, and that conditioning on a collider can create correlations.

22.3.3 Positive and Negative Associations
We say that variables X and Y are positively associated if increasing X predicts, on
average, an increase in Y , and vice versa19; if increasing X predicts a decrease in Y ,
then they are negatively associated. If this holds when conditioning out other vari-
ables, we talk about positive and negative partial associations. Heuristically, positive
association means positive correlation in the neighborhood of any given x, though
the magnitude of the positive correlation need not be constant. Note that not all
dependent variables have to have a definite sign for their association.

We can multiply together the signs of positive and negative partial associations
along a path in a graphical model, the same we can multiply together path coeffi-
cients in a linear graphical model. Paths which contain (inactive!) colliders should
be neglected. If all the paths connecting X and Y have the same sign, then we know
that over-all association between X and Y must have that sign. If different paths have
different signs, however, then signs alone are not enough to tell us about the over-all
association.

17That paper is now freely available online, and worth reading. See also http://www.ssc.wisc.edu/
soc/class/soc952/Wright/wright_biblio.htm for references to, and in some cases copies of, related
papers by Wright.

18See for instance Li et al. (1975).
19I.e., if dE[Y |X=x]

d x � 0
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If we are interested in conditional associations, we have to consider whether our
conditioning variables block paths or not. Paths which are blocked by conditioning
should be dropped from consideration. If a path contains an activated collider, we
need to include it, but we reverse the sign of one arrow into the collider. That is, if
X +! Z + Y , and we condition on Z , we need to replace one of the plus signs with
a � sign, because the two parents now have an over-all negative association.20 If on
the other hand one of the incoming arrows had a positive association and the other
was negative, we need to flip one of them so they are both positive or both negative;
it doesn’t matter which, since it creates a positive association between the parents21.

22.4 Independence, Conditional Independence, and In-
formation Theory

Take two random variables, X and Y . They have some joint distribution, which
we can write p(x, y). (If they are both discrete, this is the joint probability mass
function; if they are both continuous, this is the joint probability density function;
if one is discrete and the other is continuous, there’s still a distribution, but it needs
more advanced tools.) X and Y each have marginal distributions as well, p(x) and
p(y). X |= Y if and only if the joint distribution is the product of the marginals:

X |= Y , p(x, y) = p(x)p(y) (22.17)

We can use this observation to measure how dependent X and Y are. Let’s start with
the log-likelihood ratio between the joint distribution and the product of marginals:

log
p(x, y)

p(x)p(y)
(22.18)

This will always be exactly 0 when X |= Y . We use its average value as our measure of
dependence:

I [X ;Y ]⌘
X
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(22.19)

(If the variables are continuous, replace the sum with an integral.) Clearly, if X |= Y ,
then I [X ;Y ] = 0. One can show22 that I [X ;Y ] � 0, and that I [X ;Y ] = 0 implies
X |= Y . The quantity I [X ;Y ] is clearly symmetric between X and Y . Less obvi-
ously, I [X ;Y ] = I [ f (X ); g (Y )] whenever f and g are invertible functions. This

20If both smoking and asbestos are positively associated with lung cancer, and we know the patient does
not have lung cancer, then high levels of smoking must be compensated for by low levels of asbestos, and
vice versa.

21If yellow teeth are positively associated with smoking and negatively associated with dental insurance,
and we know the patient does not have yellow teeth, then high levels of smoking must be compensated
for by excellent dental care, and conversely poor dental care must be compensated for by low levels of
smoking.

22Using the same type of convexity argument (“Jensen’s inequality”) we used in Lecture 19 for under-
standing the details of the EM algorithm.
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coordinate-freedom means that I [X ;Y ] measures all forms of dependence, not just
linear relationships, like the ordinary (Pearson) correlation coefficient, or monotone
dependence, like the rank (Spearman) correlation coefficient. In information theory,
I [X ;Y ] is called the mutual information, or Shannon information, between X
and Y . So we have the very natural statement that random variables are independent
just when they have no information about each other.

There are (at least) two ways of giving an operational meaning to I [X ;Y ]. One,
the original use of the notion, has to do with using knowledge of Y to improve
the efficiency with which X can be encoded into bits (Shannon, 1948; Cover and
Thomas, 2006). While this is very important — it’s literally transformed the world
since 1945 — it’s not very statistical. For statisticians, what matters is that if we
test the hypothesis that X and Y are independent, with joint distribution p(x)p(y),
against the hypothesis that they dependent, with joint distribution p(x, y), then our
power to detect dependence grows exponentially with the number of samples, and the
exponential rate at which it grows is I [X ;Y ]. More exactly, if we take independence
to be the null hypothesis, and �n is the error probability with n samples,

� 1
n

log�n! I [X ;Y ] (22.20)

(See Cover and Thomas (2006) again, or Kullback (1968).) So positive mutual infor-
mation means dependence, and the magnitude of mutual information tells us about
how detectable the dependence is.

Suppose we conditioned X and Y on a third variable (or variables) Z . For each
realization z, we can calculate the mutual information,

I [X ;Y |Z = z]⌘
X
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z) (22.21)

And we can average over z,

I [X ;Y |Z]⌘
X

z
p(z)I [X ;Y |Z = z] (22.22)

This is the conditional mutual information. It will not surprise you at this point to
learn that X |= Y |Z if and only if I [X ;Y |Z] = 0. The magnitude of the conditional
mutual information tells us how easy it is to detect conditional dependence.

22.5 Further Reading
The two foundational books on graphical causal models are Spirtes et al. (2001) and
Pearl (2009b). Both are excellent and recommended in the strongest possible terms;
but if you had to read just one, I would recommend Spirtes et al. (2001). If on the
other hand you do not feel up to reading a book at all, then Pearl (2009a) is much
shorter, and covers most of the high points. (Also, it’s free online.) The textbook
by Morgan and Winship (2007) is much less demanding mathematically, which also
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means it is less complete conceptually, but it does explain the crucial ideas clearly, sim-
ply, and with abundant examples.23 Lauritzen (1996) has a mathematically rigorous
treatment of d-separation (among many other things), but de-emphasizes causality.

Linear path models have a very large literature, going back to the early 20th cen-
tury; see references in the previous chapter. Many software packages for linear struc-
tural equation models and path analysis offer options to search for models; these are
not, in general, reliable (Spirtes et al., 2001).

On information theory (§22.4), the best book is Cover and Thomas (2006) by a
large margin. Raginsky (2011) provides a fascinating information-theoretic account
of graphical causal models and d o(), in terms of the notion of directed (rather than
mutual) information.

22.6 Exercises
1. Show, for the graphical model in Figure 21.4, that p(Yellow teeth|d o(Asbestos=

a)) is always the same as p(Yellow teeth|d o(Asbestos= a+ 1)).

2. Find all the paths between the exogenous variables in Figure 22.5, and verify
that every such path goes through at least one collider.

3. Is it true that in any DAG, every path between exogenous variables must go
through at least one collider, or descendant of a collider? Either prove it or
construct a counter-example in which it is not true. Does the answer change
we say “go through at least one collider”, rather than “collider or descendant
of a collider”?

4. Prove that X2 |= X3|X5 in Figure 22.5.

23This textbook also discusses an alternative formalism for counterfactuals, due to Donald Rubin. While
Rubin has done very distinguished work in causal inference, his formalism is vastly harder to manipulate
than are graphical models, but has no more expressive power. (Pearl (2009a) has a convincing discussion
of this point.) I have accordingly skipped the Rubin formalism here, but good accounts are available in
Morgan and Winship (2007, ch. 2), and in Rubin’s collected papers (Rubin, 2006).


