
22:41 Wednesday 6th February, 2013

Appendix A

Writing R Functions

The ability to read, understand, modify and write simple pieces of code is an essential
skill for modern data analysis. Lots of high-quality software already exists for specific
purposes, which you can and should use, but statisticians need to grasp how such soft-
ware works, tweak it to suit their needs, recombine existing pieces of code, and when
needed create their own tools. Someone who just knows how to run canned routines
is not a data analyst but a technician who tends a machine they do not understand.

Fortunately, writing code is not actually very hard, especially not in R. All it
demands is the discipline to think logically, and the patience to practice. This chapter
tries to illustrate what’s involved, starting from the very beginning. It is redundant
for many students, but included through popular demand.

A.1 Functions
Programming in R is organized around functions. You all know what a mathemat-
ical function is, like log x or �(z) or sin✓: it is a rule which takes some inputs and
delivers a definite output. A function in R, like a mathematical function, takes zero
or more inputs, also called arguments, and returns an output. The output is arrived
at by going through a series of calculations, based on the input, which we specify
in the body of the function. As the computer follows our instructions, it may do
other things to the system; these are called side-effects. (The most common sort of
side-effect, in R, is probably making or updating a plot on the screen.) The basic
declaration or definition of a function looks like so:

my.function <- function(argument.1, argument.2, ...) {
clever manipulations of arguments
return(the.return.value)

}

Strictly speaking, we often don’t need the return() command; without it, the func-
tion will return the last thing it evaluated. But it’s usually clearer, and never hurts, to
be explicit.

500

501 A.2. FIRST EXAMPLE: PARETO QUANTILES

We write functions because we often find ourselves going through the same se-
quence of steps at the command line, perhaps with small variations. It saves mental
effort on our part to take that sequence and bind it together into an integrated pro-
cedure, the function, so that then we can think about the function as a whole, rather
than the individual steps. It also reduces error, because, by invoking the same func-
tion every time, we don’t have to worry about missing a step, or wondering whether
we forgot to change the third step to be consistent with the second, and so on.

A.2 First Example: Pareto Quantiles
Let me give a really concrete example. In Chapter 6, I mentioned the Pareto distri-
bution, which has the probability density function

f (x;↵, x0) =

(
↵�1

x0

⇣
x
x0

⌘�↵
x � x0

0 x < x0

(A.1)

Consequently, the CDF is

F (x;↵, x0) = 1�
Ç

x
x0

å�↵+1

(A.2)

and the quantile function is

Q(p;↵, x0) = x0(1� p)�
1
↵�1 (A.3)

Say I want to find the median of a Pareto distribution with ↵ = 2.34 and x0 =
6⇥ 108. I can do that:

> 6e8 * (1-0.5)^(-1/(2.33-1))
[1] 1010391288

If I decide I want the 40th percentile of the same distribution, I can do that:

> 6e8 * (1-0.4)^(-1/(2.33-1))
[1] 880957225

If I decide to raise the exponent to 2.5, lower the threshold to 1⇥ 106, and ask about
the 92nd percentile, I can do that, too:

> 1e6 * (1-0.92)^(-1/(2.5-1))
[1] 5386087

But doing this all by hand gets quite tiresome, and at some point I’m going to
mess up and write when I meant ˆ. I’ll write a function to do this for me, and so that
there is only one place for me to make a mistake:

qpareto.1 <- function(p, exponent, threshold) {
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}

22:41 Wednesday 6th February, 2013

A.3. FUNCTIONS WHICH CALL FUNCTIONS 502

The name of the function is what goes on the left of the assignment <-, with the dec-
laration (beginning function) on the right. (I called this qpareto.1 to distinguish it
from later modifications.) The three terms in the parenthesis after function are the
arguments to qpareto — the inputs it has to work with. The body of the function
is just like some R code we would type into the command line, after assigning values
to the arguments. The very last line tells the function, explicitly, what its output or
return value should be. Here, of course, the body of the function calculates the pth
quantile of the Pareto distribution with the exponent and threshold we ask for.

When I enter the code above, defining qpareto.1, into the command line, R just
accepts it without outputting anything. It thinks of this as assigning certain value
to the name qpareto.1, and it doesn’t produce outputs for assignments when they
succeed, just as if I’d said alpha <- 2.5.

All that successfully creating a function means, however, is that we didn’t make
a huge error in the syntax. We should still check that it works, by invoking the
function with values of the arguments where we know, by other means, what the
output should be. I just calculated three quantiles of Pareto distributions above, so
let’s see if we can reproduce them.

> qpareto.1(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
> qpareto.1(p=0.4,exponent=2.33,threshold=6e8)
[1] 880957225
> qpareto.1(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087

So, our first function seems to work successfully.

A.3 Functions Which Call Functions
If we examine other quantile functions (e.g., qnorm), we see that most of them take
an argument called lower.tail, which controls whether p is a probability from the
lower tail or the upper tail. qpareto.1 implicitly assumes that it’s the lower tail, but
let’s add the ability to change this.

qpareto.2 <- function(p, exponent, threshold, lower.tail=TRUE) {
if(lower.tail==FALSE) {

p <- 1-p
}
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}

When, in a function declaration, an argument is followed by = and an expression,
the expression sets the default value of the argument, the one which will be used
unless explicitly over-ridden. The default value of lower.tail is TRUE, so, unless it
is explicitly set to false, we will assume p is a probability counted from �1 on up.

22:41 Wednesday 6th February, 2013

503 A.3. FUNCTIONS WHICH CALL FUNCTIONS

The if command is a control structure — if the condition in parenthesis is true,
then the commands in the following braces will be executed; if not, not. Since lower
tail probabilities plus upper tail probabilities must add to one, if we are given an
upper tail probability, we just find the lower tail probability and proceed as before.

Let’s try it:

> qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
> qpareto.2(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
> qpareto.2(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087
> qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=FALSE)
[1] 1010391288
> qpareto.2(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162

First: the answer qpareto.2 gives with lower.tail explicitly set to true matches
what we already got from qpareto.1. Second and third: the default value for lower.tail
works, and it works for two different values of the other arguments. Fourth and fifth:
setting lower.tail to FALSE works properly (since the 50th percentile is the same
from above or from below, but the 92nd percentile is different, and smaller from
above than from below).

The function qpareto.2 is equivalent to this:

qpareto.3 <- function(p, exponent, threshold, lower.tail=TRUE) {
if(lower.tail==FALSE) {

p <- 1-p
}
q <- qpareto.1(p, exponent, threshold)
return(q)

}

When R tries to execute this, it will look for a function named qpareto.1 in the
workspace. If we have already defined such a function, then R will execute it, with the
arguments we have provided, and q will become whatever is returned by qpareto.1.
When we give R the above function definition for qpareto.3, it does not check
whether qpareto.1 exists — it only has to be there at run time. If qpareto.1
changes, then the behavior of qpareto.3 will change with it, without our having
to redefine qpareto.3.

This is extremely useful. It means that we can take our programming problem and
sub-divide it into smaller tasks efficiently. If I made a mistake in writing qpareto.1,
when I fix it, qpareto.3 automatically gets fixed as well — along with any other
function which calls qpareto.1, or qpareto.3 for that matter. If I discover a more
efficient way to calculate the quantiles and modify qpareto.1, the improvements are
likewise passed along to everything else. But when I write qpareto.3, I don’t have to
worry about how qpareto.1 works, I can just assume it does what I need somehow.

22:41 Wednesday 6th February, 2013

A.4. LAYERING FUNCTIONS AND DEBUGGING 504

A.3.1 Sanity-Checking Arguments
It is good practice, though not strictly necessary, to write functions which check that
their arguments make sense before going through possibly long and complicated cal-
culations. For the Pareto quantile function, for instance, p must be in [0,1], the
exponent ↵ must be at least 1, and the threshold x0 must be positive, or else the
mathematical function just doesn’t make sense.

Here is how to check all these requirements:

qpareto.4 <- function(p, exponent, threshold, lower.tail=TRUE) {
stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
q <- qpareto.3(p,exponent,threshold,lower.tail)
return(q)

}

The function stopifnot halts the execution of the function, with an error message, if
all of its arguments do not evaluate to TRUE. If all those conditions are met, however,
R just goes on to the next command, which here happens to be running qpareto.3.
Of course, I could have written the checks on the arguments directly into the latter.

Let’s see this in action:

> qpareto.4(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
> qpareto.4(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162
> qpareto.4(p=1.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
Error: p <= 1 is not TRUE
> qpareto.4(p=-0.02,exponent=2.5,threshold=1e6,lower.tail=FALSE)
Error: p >= 0 is not TRUE
> qpareto.4(p=0.92,exponent=0.5,threshold=1e6,lower.tail=FALSE)
Error: exponent > 1 is not TRUE
> qpareto.4(p=0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)
Error: threshold > 0 is not TRUE
> qpareto.4(p=-0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)
Error: p >= 0 is not TRUE

The first two lines give the same results as our earlier functions — as they should,
because all the arguments are in the valid range. The third, fourth, fifth and sixth lines
all show that qpareto.4 stops with an error message when one of the conditions in
the stopifnot is violated. Notice that the error message says which condition was
violated. The seventh line shows one limitation of this: the arguments violate two
conditions, but stopifnot’s error message will only mention the first one. (What is
the other violation?)

A.4 Layering Functions and Debugging
Functions can call functions which call functions, and so on indefinitely. To illus-
trate, I’ll write a function which generates Pareto-distributed random numbers, using

22:41 Wednesday 6th February, 2013

505 A.4. LAYERING FUNCTIONS AND DEBUGGING

the “quantile transform” method from Lecture 7. This, remember, is to generate a
uniform random number U on [0,1], and produce Q(U), with Q being the quantile
function of the desired distribution.

The first version contains a deliberate bug, which I will show how to track
down and fix.

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {

x[i] <- qpareto.4(p=rnorm(1),exponent=exponent,threshold=threshold)
}
return(x)

}

Notice that this calls qpareto.4, which calls qpareto.3, which calls qpareto.1.
Let’s this out:

> rpareto(10)
Error in exponent > 1 : ’exponent’ is missing

This is a puzzling error message — the expression exponent > 1 never appears in
rpareto! The error is coming from further down the chain of execution. We can
see where it happens by using the traceback() function, which gives the chain of
function calls leading to the latest error:

> rpareto(10)
Error in exponent > 1 : ’exponent’ is missing
> traceback()
3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold)
1: rpareto(10)

traceback() outputs the sequence of function calls leading up to the error in reverse
order, so that the last line, numbered 1, is what we actually entered on the command
line. This tells us that the error is happening when qpareto.4 tries to check the
arguments to the quantile function. And the reason it is happening is that we are not
providing qpareto.4 with any value of exponent. And the reason that is happening
is that we didn’t give rpareto any value of exponent as an explicit argument when
we called it, and our definition didn’t set a default.

Let’s try this again.

> rpareto(n=10,exponent=2.5,threshold=1)
Error: p <= 1 is not TRUE
> traceback()
4: stop(paste(ch, " is not ", if (length(r) > 1L) "all ", "TRUE",

sep = ""), call. = FALSE)
3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold)
1: rpareto(n = 10, exponent = 2.5, threshold = 1)

22:41 Wednesday 6th February, 2013

A.4. LAYERING FUNCTIONS AND DEBUGGING 506

This is progress! The stopifnot in qpareto.4 is at least able to evaluate all the
conditions — it just happens that one of them is false. (The line 4 here comes from
the internal workings of stopifnot.) The problem, then, is that qpareto.4 is being
passed a negative value of p. This tells us that the problem is coming from the part of
rpareto.1 which sets p. Looking at that,

p = rnorm(1)

the culprit is obvious: I stupidly wrote rnorm, which generates a Gaussian random
number, when I meant to write runif, which generates a uniform random number.1

The obvious fix is just to replace rnorm with runif

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {

x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)
}
return(x)

}

Let’s see if this is enough to fix things, or if I have any other errors:

> rpareto(n=10,exponent=2.5,threshold=1)
[1] 1.000736 2.764087 2.775880 1.058910 1.061712 2.142950 4.220731
[8] 1.496793 3.004766 1.194545

This function at least produces numerical return values rather than errors! Are they
the right values?

We can’t expect a random number generator to always give the same results, so
I can’t cross-check this function against direct calculation, the way I could check
qpareto.1. (Actually, one way to check a random number generator is to make
sure it doesn’t give identical results when run twice!) It’s at least encouraging that all
the numbers are above threshold, but that’s not much of a test. However, since this
is a random number generator, if I use it to produce a lot of random numbers, the
quantiles of the output should be close to the theoretical quantiles, which I do know
how to calculate.

> r <- rpareto(n=1e4,exponent=2.5,threshold=1)
> qpareto.4(p=0.5,exponent=2.5,threshold=1)
[1] 1.587401
> quantile(r,0.5)

50%
1.598253
> qpareto.4(p=0.1,exponent=2.5,threshold=1)
[1] 1.072766
> quantile(r,0.1)

10%
1I actually made this exact mistake the first time I wrote the function, back in 2004.

22:41 Wednesday 6th February, 2013

507 A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS

1.072972
> qpareto.4(p=0.9,exponent=2.5,threshold=1)
[1] 4.641589
> quantile(r,0.9)

90%
4.526464

This looks pretty good. Figure A.1 shows a plot comparing all the theoretical per-
centiles to the simulated ones, confirming that we didn’t just get lucky with choosing
particular percentiles above.

A.4.1 More on Debugging
Everyone who writes their own code spends a lot of time debugging2. There are some
guidelines for making it easier and less painful.

Characterize the Bug We’ve got a bug when the code we’ve written won’t do
what we want. To fix this, it helps a lot to know exactly what error we’re seeing.
The first step to this is to make the error reproducible. Can we always get the error
when re-running the same code and values? If we start the same code in a clean copy
of R, does the same thing happen? Once we can reproduce the error, we map its
boundaries. How much can we change the inputs and get the same error? A different
error? For what inputs (if any) does the bug go away? How big is the error?

Localize the Bug The problem may be a diffuse all-pervading wrongness, but often
it’s a lot more localized, to a few lines or even just one line of code; it helps to know
where! We have seen some tools for localizing the bug above: traceback() and
stopifnot(). Another very helpful one is to add print statements, so that our
function gives us messages about the progress of its calculations, selected variables,
etc., as it goes; the warning command can be used to much the same effect3.

Fix the Bug Once you know what’s going wrong and where it’s going wrong, it’s
often not too hard to spot the error, either one of syntax (say = vs. ==) or logic. Try
a fix and see if it makes it better. Do the inputs which gave you the bugs before now
work properly? Are you getting different errors?

A.5 Automating Repetition and Passing Arguments
The match between the theoretical quantiles and the simulated ones in Figure A.1 is
close, but it’s not perfect. On the one hand, this might indicate some subtle mistake.
On the other hand, it might just be random sampling noise — rpareto is supposed

2Those who don’t write their own code but use computers anyway spend a lot of time putting up with
other people’s bugs.

3Real software engineers look down on this, in favor of more sophisticated tools, like interactive de-
buggers. They have something of a point, but that’s usually over-kill for the purposes of this class.

22:41 Wednesday 6th February, 2013

A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS 508

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m
ul
at
ed
.p
er
ce
nt
ile
s

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)

Figure A.1: Theoretical percentiles of the Pareto distribution with ↵ = 2.5, x0 = 1,
and empirical percentiles from a sample of 104 values simulated from it with the
rpareto function. (The solid line is the x = y diagonal, for visual reference.)

22:41 Wednesday 6th February, 2013

509 A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS

to be a random number generator, after all. We could check this by seeing whether
we get different deviations around the line with different runs of rpareto, or if on
the contrary they all pull in the same direction. We could just make many plots by
hand, the way we made that plot by hand, but since we’re doing almost exactly the
same thing many times, let’s write a function.

pareto.sim.vs.theory <- function() {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles)

}

This doesn’t return anything. All it does is draw a new sample from the same Pareto
distribution as before, re-calculate the simulated percentiles, and add them to an exist-
ing plot — this is an example of a side-effect. Notice also that the function presumes
that theoretical.percentiles already exists. (The theoretical percentiles won’t
need to change from one simulation draw to the next, so it makes sense to only cal-
culate them once.)

Figure A.2 shows how we can use it to produce multiple simulation runs. We can
see that, looking over many simulation runs, the quantiles seem to be too large about
as often, and as much, as they are too low, which is reassuring.

One thing which that figure doesn’t do is let us trace the connections between
points from the same simulation. More generally, we can’t modify the plotting prop-
erties, which is kind of annoying. This is easily fixed modifying the function to pass
along arguments:

pareto.sim.vs.theory <- function(...) {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Putting the ellipses (...) in the argument list means that we can give pareto.sim.vs.theory.2
an arbitrary collection of arguments, but with the expectation that it will pass them
along unchanged to some other function that it will call with ... — here, that’s the
points function. Figure A.3 shows how we can use this, by passing along graph-
ical arguments to points — in particular, telling it to connect the points by lines
(type="b"), varying the shape of the points (pch=i) and the line style (lty=i).

These figures are reasonably convincing that nothing is going seriously wrong
with the simulation for these parameter values. To check other parameter settings,
again, I could repeat all these steps by hand, or I could write another function:

check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {
One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
Set up plotting window, but don’t put anything in it:

22:41 Wednesday 6th February, 2013

A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS 510

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m
ul
at
ed
.p
er
ce
nt
ile
s

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {

pareto.sim.vs.theory()
}

Figure A.2: Comparing multiple simulated quantile values to the theoretical quan-
tiles.

22:41 Wednesday 6th February, 2013

511 A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m
ul
at
ed
.p
er
ce
nt
ile
s

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {

pareto.sim.vs.theory(pch=i,type="b",lty=i)
}

Figure A.3: As Figure A.2, but using the ability to pass along arguments to a sub-
sidiary function to distinguish separate simulation runs.

22:41 Wednesday 6th February, 2013

A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS 512

plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),
No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {

pareto.sim.vs.theory(n=n,exponent=exponent,threshold=threshold,
pch=i,type="b",lty=i)

}
}

Defining this will work just fine, but it won’t work properly until we re-defined
pareto.sim.vs.theory to take the arguments n, exponent and threshold.4

It seems like a simple modification of the old definition should do the trick:

pareto.sim.vs.theory <- function(n,exponent,threshold,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

After defining this, the checker function seems to work fine. The following com-
mands produce the plot in Figure A.4, which looks very like the manually-created
one. (Random noise means it won’t be exactly the same.) Putting in the default
arguments explicitly gives the same results (not shown).

> check.rpareto()
> check.rpareto(n=1e4,exponent=2.5,threshold=1)

Unfortunately, changing the arguments reveals a bug (Figure A.5). Notice that
the vertical coordinates of the points, coming from the simulation, look like they
have about the same range as the theoretical quantiles, used to lay out the plotting
window. But the horizontal coordinates are all pretty much the same (on a scale of
tens of billions, anyway). What’s going on?

The horizontal coordinates for the points being plotted are set in pareto.sim.vs.theory.3:

points(theoretical.percentiles,simulated.percentiles,...)

Where does this function get theoretical.percentiles from? Since the vari-
able isn’t assigned inside the function, R tries to figure it out from context. Since
pareto.sim.vs.theory was defined on the command line, the context R uses to in-
terpret it is the global workspace — where there is, in fact, a variable called theoretical.percentiles,
which I set by hand for the previous plots. So the plotted theoretical quantiles are all

4Try running check.rpareto(), follows by warnings().

22:41 Wednesday 6th February, 2013

513 A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS

0 5 10 15 20

0
5

10
15

20

exponent = 2.5 , threshold = 1

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

check.rpareto()

Figure A.4: Automating the checking of rpareto.

22:41 Wednesday 6th February, 2013

A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS 514

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

0.
0e
+0
0
5.
0e
+0
9
1.
0e
+1
0
1.
5e
+1
0
2.
0e
+1
0
2.
5e
+1
0
3.
0e
+1
0

exponent = 2.33 , threshold = 9e+08

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

check.rpareto(n=1e4,exponent=2.33,threshold=9e8)

Figure A.5: A bug in check.rpareto.

22:41 Wednesday 6th February, 2013

515 A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS

too small in Figure A.5, because they’re for a distribution with a much lower thresh-
old.

Didn’t check.rpareto assign is own value to theoretical.percentiles, which
it used to set the plot boundaries? Yes, but that assignment only applied in the context
of the function. Assignments inside a function have limited scope, they leave values in
the broader context alone. Try this:

> x <- 7
> x
[1] 7
> square <- function(y) { x <- y^2; return(x) }
> square(7)
[1] 49
> x
[1] 7

The function square assigns x to be the square of its argument. This assignment
holds within the scope of the function, as we can see from the fact that the returned
value is always the square of the argument, and not what we assigned x to be in the
global, command-line context. However, this does not over-write that global value,
as the last line shows.5

There are two ways to fix this problem. One is to re-define pareto.sim.vs.theory
to calculate the theoretical quantiles:

pareto.sim.vs.theory <- function(n,exponent,threshold,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

This will work (try running check.rpareto(1e4,2.33,9e8) now), but it’s very re-
dundant — every time we call this, we’re recalculating the same percentiles, which
we already calculated in check.rpareto. A cleaner solution is to make the vec-
tor of theoretical percentiles an argument to pareto.sim.vs.theory, and change
check.rpareto to provide it.

check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {
One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
Set up plotting window, but don’t put anything in it:
plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),

5There are techniques by which functions can change assignments outside of their scope. They are
tricky, rare, and best avoided except by those who really know what they are doing. (If you think you do,
you are probably wrong.)

22:41 Wednesday 6th February, 2013

A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS 516

No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {

pareto.sim.vs.theory.4(n=n,exponent=exponent,threshold=threshold,
theoretical.percentiles=theoretical.percentiles,
pch=i,type="b",lty=i)

}
}

pareto.sim.vs.theory <- function(n,exponent,threshold,
theoretical.percentiles,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Figure A.6 shows that this succeeds.

22:41 Wednesday 6th February, 2013

517 A.5. AUTOMATING REPETITION AND PASSING ARGUMENTS

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

0.
0e
+0
0
5.
0e
+0
9
1.
0e
+1
0
1.
5e
+1
0
2.
0e
+1
0
2.
5e
+1
0
3.
0e
+1
0

exponent = 2.33 , threshold = 9e+08

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

check.rpareto(1e4,2.33,9e8)

Figure A.6: Using the corrected simulation checker.

22:41 Wednesday 6th February, 2013

A.6. AVOIDING ITERATION: MANIPULATING OBJECTS 518

A.6 Avoiding Iteration: Manipulating Objects
Let’s go back to the declaration of rpareto, which I repeat here, unchanged, for
convenience:

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {

x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)
}
return(x)

}

We’ve confirmed that this works, but it involves explicit iteration in the form of
the for loop. Because of the way R carries out iteration6, it is slow, and better avoided
when possible. Many of the utility functions in R, like replicate, are designed to
avoid explicit iteration. We could re-write rpareto using replicate, for example:

rpareto <- function(n,exponent,threshold) {
x <- replicate(n,qpareto.4(p=runif(1),exponent=exponent,threshold=threshold))
return(x)

}

(The outstanding use of replicate is when we want to repeat the same random
experiment many times — there are examples in the notes for Chapters 6.)

An every clearer alternative makes use of the way R automatically vectorizes
arithmetic:

rpareto <- function(n,exponent,threshold) {
x <- qpareto.4(p=runif(n),exponent=exponent,threshold=threshold)
return(x)

}

This feeds qpareto.4 a vector of quantiles p, of length n, which in turn gets passed
along to qpareto.1, which finally tries to evaluate

threshold*((1-p)^(-1/(exponent-1)))

With p being a vector, R hopes that threshold and exponent are also vectors, and
of the same length, so that it evaluate this arithmetic expression component-wise. If
exponent and threshold are shorter, it will “recycle” their values, in order, until
it has vectors equal in length to p. In particular, if exponent and threshold have
length 1, it will repeat both of them length(p) times, and then evaluate everything
component by component. (See the “Introduction to R” manual for more on this
“recycling rule”.) The quantile functions we have defined inherit this ability to re-
cycle, without any special work on our part. The final version of rpareto we have
written is not only faster, it is clearer and easier to read. It focuses our attention on
what is being done, and not on the mechanics of doing it.

6Roughly speaking, it ends up having to create and destroy a whole copy of everything which gets
changed in the course of one pass around the iteration loop, which can involve lots of memory and time.

22:41 Wednesday 6th February, 2013

519 A.6. AVOIDING ITERATION: MANIPULATING OBJECTS

-4 -2 0 2 4

0
5

10
15

20
25

x

curve(x^2,col="grey",from=-5,to=5,ylab="")
curve(huber,add=TRUE)

Figure A.7: The Huber loss function (black) versus the squared error loss (grey).

A.6.1 ifelse and which
Sometimes we want to do different things to different parts of a vector (or larger
structure) depending on its values. For instance, in robust regression one often re-
places the squared error loss with what’s called the Huber loss7,

 (x) =
⇢

x2 if |x| 1
2|x|� 1 if |x|> 1 (A.4)

which isn’t so vulnerable to outliers, as in Figure A.7.
We might code this up like so:

huber <- function(x) {
n <- length(x)
y <- vector(n)
for (i in 1:n) {

if (abs(x) =< 1) {
y[i] <- x[i]^2

} else {
y[i] <- 2*abs(x[i])-1

}
}
return(y)

}
7One applies this not to the residuals directly, but to residuals divided by some robust measure of

dispersion.

22:41 Wednesday 6th February, 2013

A.6. AVOIDING ITERATION: MANIPULATING OBJECTS 520

This is not very easy follow. R provides a very useful function, ifelse, which lets
us apply a binary test, and then draw from either of two calculations. Using it, we
re-write huber like so:

huber <- function(x) {
return(ifelse(abs(x) =< 1, x^2, 2*abs(x)-1))

}

The first argument needs to produce a vector of TRUE/FALSE values; the second
argument provides the outputs for the TRUE positions, the third the outputs for
the FALSE positions. Here all three are expressions involving the same variable, but
that’s not essential.

Another useful device is the which function, whose argument is a vector of TRUE/FALSE
values, returning a vector of the indices where the argument is TRUE, e.g.,

incomplete.cases <- which(is.na(cholesterol))

would give us the positions at which the vector cholesterol had NA values. This is
equivalent to

incomplete.cases <- c()
for (i in 1:length(cholesterol)) {

if (is.na(cholesterol[i])) {
incomplete.cases <- c(incomplete.cases,i)

}
}

A.6.2 apply and Its Variants
Particularly useful ways of avoiding iteration come from the function apply, and the
closely related sapply and lapply functions. We saw apply in Chapter 6:

x <- replicate(10,rpareto(100,2.5,1))
apply(x,2,quantile,probs=0.9)

Each call to rpareto inside the replicate creates a vector of length 100. Replicate
then stacks these, as columns, into an array. The apply function applies the same
function to each row or column of the array, depending on whether its second argu-
ment is 1 (rows) or 2 (columns). So this will find the 90th percentile of each of the 10
random-number draws, and give that back to us as a vector.

array only works for arrays, matrices and data frames (and works on them by
treating them as arrays). If we want to apply the same function to every element of a
vector or list, we use lapply. This gives us back a list, which can be inconvenient:

> y <- c(0.9,0.99,0.999,0.99999)
> lapply(y,qpareto.4,exponent=2.5,threshold=1)
[[1]]
[1] 4.641589

22:41 Wednesday 6th February, 2013

521 A.6. AVOIDING ITERATION: MANIPULATING OBJECTS

[[2]]
[1] 21.54435

[[3]]
[1] 100

[[4]]
[1] 2154.435

The function sapply works like lapply, but tries to simplify its output down to a
vector or array:

> sapply(y,qpareto.4,exponent=2.5,threshold=1)
[1] 4.641589 21.544347 100.000000 2154.434690

With this function, this is equivalent to qpareto.4(y,exponent=2.5,threshold=1),
but sapply can take considerably more complicated functions:

Suppose we have models lm.1 and lm.2 hanging around
some.models <- list(model.1=lm.1, model.2=lm.2)
Extract all the coefficients from all the models
sapply(some.models,coefficients)

sapply has a simplify argument, which defaults to TRUE; setting it to FALSE
turns off the simplification. replicate actually has the same argument. Usually,
simplifying the output of replicate is a good thing, but it can weirdness when
what’s being replicated is a complicated value itself.

For instance, here’s a little bit of bootstrapping regression models, using the fossil-
animal data set from homework 3.

resample <- function(x) { sample(x,size=length(x),replace=TRUE) }
nampd.lm.subset <- function(s) {

lm(delta_ln_mass ~ ln_old_mass,data=nampd,subset=s)
}
boot.models.1 <- replicate(10,nampd.lm.subset(resample(1:nrow(nampd))))

Working with boot.models.1 is going to be very hard, because it wants to be an
array, but isn’t quite, and is generally very confused. (Try it!) Instead do it this way:

boot.models.2 <- replicate(10,nampd.lm.subset(resample(1:nrow(nampd))),
simplify=FALSE)

boot.models.2 is simply a list with 10 elements, each one of which is an lm-style
model. Now it’s easy extract information about any particular one, or use sapply:

> sapply(boot.models.2,coefficients)
[,1] [,2] [,3] [,4]

(Intercept) 0.21613522 0.092359537 0.184610989 0.15530334
ln_old_mass -0.01379554 -0.002729451 -0.007396701 -0.01078759

22:41 Wednesday 6th February, 2013

A.7. MORE COMPLICATED RETURN VALUES 522

[,5] [,6] [,7] [,8]
(Intercept) 0.124932040 0.115330144 0.192097575 0.0880172496
ln_old_mass -0.003754933 -0.007362125 -0.008486858 0.0008434435

[,9] [,10]
(Intercept) 0.17065043 0.207331222
ln_old_mass -0.01430204 -0.009881709

A.7 More Complicated Return Values
So far, all the functions we have written have returned either a single value, or a sim-
ple vector, or nothing at all. The built-in functions return much more complicated
things, like matrices, data frames, or lists, and we can too.

To illustrate, let’s switch gears away from the Pareto distribution, and think about
the Gaussian for a change. As you know, if we have data x1, x2, . . . xn and we want
to fit a Gaussian distribution to them by maximizing the likelihood, the best-fitting
Gaussian has mean

µ̂=
1
n

nX
i=1

xi (A.5)

which is just the sample mean, and variance

�̂2 =
1
n

nX
i=1
(xi � µ̂)2 (A.6)

which differs from the usual way of defining the sample variance by having a factor
of n in the denominator, instead of n � 1. Let’s write a function which takes in a
vector of data points and returns the maximum-likelihood parameter estimates for a
Gaussian.

gaussian.mle <- function(x) {
n <- length(x)
mean.est <- mean(x)
var.est <- var(x)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

}

There is one argument, which is the vector of data. To be cautious, I should probably
check that it is a vector of numbers, but skip that to be clear here. The first line
figures out how many data points we have. The second takes the mean. The third
finds the estimated variance — the definition of the built-in var function uses n � 1
in its denominator, so I scale it down by the appropriate factor8. The fourth line
creates a list, called est, with two components, named mean and sd, since those are
the names R likes to use for the parameters of Gaussians. The first component is

8Clearly, if n is large, n�1
n = 1� 1/n will be very close to one, but why not be precise?

22:41 Wednesday 6th February, 2013

523 A.8. RE-WRITING YOUR CODE: AN EXTENDED EXAMPLE

our estimated mean, and the second is the standard deviation corresponding to our
estimated variance9. Finally, the function returns the list.

As always, it’s a good idea to check the function on a case where we know the
answer.

> x <- 1:10
> mean(x)
[1] 5.5
> var(x) * (9/10)
[1] 8.25
> sqrt(var(x) * (9/10))
[1] 2.872281
> gaussian.mle(x)
$mean
[1] 5.5

$sd
[1] 2.872281

A.8 Re-Writing Your Code: An Extended Example
Suppose we want to find a standard error for the median of a Gaussian distribution.
We know, somehow, that the mean of the Gaussian is 3, the standard deviation is 2,
and the sample size is one hundred. If we do

x <- rnorm(n=100,mean=3,sd=2)

we’ll get a draw from that distribution in x. If we do

x <- rnorm(n=100,mean=3,sd=2)
median(x)

we’ll calculate the median on one random draw. Following the general idea of boot-
strapping we can approximate the standard error of the median by repeating this
many times and taking the standard deviation. We’ll do this by explicitly iterating,
so we need to set up a vector to store our intermediate results first.

medians <- vector(length=100)
for (i in 1:100) {

x <- rnorm(n=100,mean=3,sd=2)
medians[i] <- median(x)

}
se.in.median <- sd(medians)

9If n is large,
q

n�1
n =
q

1� 1
n ⇡ 1� 1

2n (using the binomial theorem in the last step). For reasonable
data sets, the error of just using sd(x) would have been small — but why have it at all?

22:41 Wednesday 6th February, 2013

A.8. RE-WRITING YOUR CODE: AN EXTENDED EXAMPLE 524

Well, how do we know that 100 replicates is enough to get a good approximation?
We’d need to run this a couple of times, typing it in or at least pasting it in many
times. Instead, we can write a function which just gives everything we’ve done a
single name. (I’ll add comments as I go on.)

Inputs: None; everything is hard-coded
Output: the standard error in the median
find.se.in.median <- function() {

Set up a vector to store the simulated medians
medians <- vector(length=100)
Do the simulation 100 times
for (i in 1:100) {

x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate the median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

If we decide that 100 replicates isn’t enough and we want 1000, we need to change
this function. We could just change the first two appearances of “100” to “1000”, but
we have to catch all of them; we have to remember that the 100 in rnorm is there for
a different reason and leave it alone; and if we later decide that actually 500 replicates
would be enough, we have to do everything all over again.

It is easier, safer, clearer and more flexible to abstract a little and add an argument
to the function, which is the number of replicates. I’ll add comments as I go.

Inputs: Number of bootstrap replicates B
Output: the standard error in the median
find.se.in.median <- function(B) {

Set up a vector to store the simulated medians
medians <- vector(length=B)
Do the simulation B times
for (i in 1:B) {

x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

Now suppose we want to find the standard error of the median for an exponential
distribution with rate 2 and sample size 37. We could write another function,

find.se.in.median.exp <- function(B) {
Set up a vector to store the simulated medians
medians <- vector(length=B)
Do the simulation B times

22:41 Wednesday 6th February, 2013

525 A.8. RE-WRITING YOUR CODE: AN EXTENDED EXAMPLE

for (i in 1:B) {
x <- rexp(n=37,rate=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

but it is wasteful to define two functions which do almost the same job. It’s not just
inelegant; it invites mistakes, it’s harder to read (imagine coming back to this in two
weeks — was there a big reason why we had two separate functions here?), and it’s
harder to improve. We need to abstract a bit more.

We could put in some kind of switch which would simulate from either of these
two distributions, maybe like this:

Inputs: number of replicates (B)
flag for whether to use a normal or an exponential (use.norm)

Output: The standard error in the median
find.se.in.median <- function(B,use.norm=TRUE) {

medians <- vector(length=B)
for (i in 1:B) {

if (use.norm) {
x <- rnorm(100,3,2)

} else {
x <- rexp(37,2)

}
medians[i] <- median(x)

}
se.in.median <- sd(medians)
return(se.in.median)

}

but why just these two? If we wanted any other distribution whatsoever, plainly all
we’d have to do is change how x is simulated. So we really want to be able to give a
simulator to the function as an argument.

Fortunately, in R you can give one function as an argument to another, so we’d
do something like this.

Inputs: Number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produce a vector of
numbers

Output: The standard error in the media
find.se.in.median <- function(B,simulator) {

median <- vector(length=B)
for (i in 1:B) {

x <- simulator()

22:41 Wednesday 6th February, 2013

A.8. RE-WRITING YOUR CODE: AN EXTENDED EXAMPLE 526

medians[i[<- median(x)
}
se.in.median <- sd(medians)
return(se.in.medians)

}

Now to repeat our original calculations, we define a simulator function:

Inputs: None
Output: ten draws from the mean 3, s.d. 2 Gaussian
simulator.1 <- function() {

return(rnorm(10,3,2))
}

If we now call

find.se.in.median(B=100,simulator=simulator.1)

then every time find.se.in.median goes through the for loop, it will call simulator.1,
which in turn will produce the right random numbers. If we also define

Inputs: None
Output: 37 draws from the rate 2 exponential
simulator.2 <- function() {

return(rexp(37,2))
}

then to find the standard error in the median of this, we just call

find.se.in.median(B=100,simulator=simulator.2)

This same approach works if we want to sample from a much more complicated
distribution. If we fit a locally-linear kernel regression to the Old Faithful data, and
want a standard error in the median of the predicted waiting times, with noise coming
from resampling cases, we would do something like this for the simulator

Inputs: None
Output: The fitted waiting times of a bootstrapped kernel smooth from the

geyser data
simulator.3 <- function() {

if (!exists("geyser")) {
require(MASS)
data(geyser)

}
n <- nrow(geyser)
resampled.rows <- sample(1:n,size=n,replace=TRUE)
geyser.r <- geyser[resampled.rows,]
fit <- npreg(waiting~duration,data=geyser.r,regtype="ll")
waiting.times <- npreg$mean
return(waiting.times)

}

22:41 Wednesday 6th February, 2013

527 A.8. RE-WRITING YOUR CODE: AN EXTENDED EXAMPLE

and then this for to find the standard error in the median:

find.se.in.median(B=100,simulator=simulator.3)

By breaking up the task this way, if we encounter errors or just general trou-
ble when we run that last command, it is easier to localize the problem. We can
check whether find.se.in.median seems to work properly with other simulator
functions. (For instance, we might write a “simulator” that either does rep(10,1) or
rep(10,-1) with equal probability, since then we can work out what the standard er-
ror of the median ought to be.) We can also check whether simulator.3 is working
properly, and finally whether there is some issue with putting them together, say that
the output from the simulator is not quite in a format that find.se.in.median can
handle. If we just have one big ball of code, it is much harder to read, to understand,
to debug, and to improe.

To turn to that last point, one of the things R does poorly is explicit iteration
with for loops. As mentioned above, it’s generally better to replace such loops with
“vectorized” functions, which do the iteration using fast code outside of R. One
of these, especially for this situation, is the function replicate. We can re-write
find.se.in.median using it:

Inputs: number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produces a vector of
numbers

Outputs: Standard error in the median of the output of simulator
find.se.in.median <- function(B,simulator) {

medians <- replicate(B,median(simulator()))
se.in.median <- sd(medians)
return(se.in.median)

}

Again: shorter, faster, and easier to understand (if you know what replicate does).
Also, because we are telling this what simulation function to use, and writing those
functions separately, we do not have to change any of our simulators. They don’t
care how find.se.in.median works. In fact, they don’t care that there is any such
function — they could be used as components in many other functions which can also
process their outputs. So long as these interfaces are maintained, the inner workings
of the functions are irrelevant to each other.

Suppose for instance that we want not the standard error of the median, but the
interquartile range of the median — the median is after all a “robust”, outlier-resistant
measure of the central tendency, and the IQR is likewise a robust measure of disper-
sion. This is now easy:

Inputs: number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produces a vector of
numbers

Outputs: Interquartile range of the median of the output of simulator

22:41 Wednesday 6th February, 2013

A.8. RE-WRITING YOUR CODE: AN EXTENDED EXAMPLE 528

find.iqr.of.median <- function(B,simulator) {
medians <- replicate(B,median(simulator()))
iqr.of.median <- IQR(medians)
return(iqr.of.median)

}

Or for that matter the good old standard error of the mean:

Inputs: number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produces a vector of
numbers

Outputs: Standard error of the mean of the output of simulator
find.se.of.mean <- function(B,simulator) {

means <- replicate(B,mean(simulator()))
se.of.mean <- sd(means)
return(se.of.mean)

}

These last few examples suggest that we could abstract even further, by swapping
in and out different estimators (like median and mean) and different summarizing
functions (like se or IQR).

Inputs: number of replicates (B)
Simulator function (simulator)
Estimator function (estimator)
Sample summarizer function (summarizer)

Presumes: simulator is a no-argument function which produces a vector of
numbers
estimator is a function that takes a vector of numbers and produces one
output
summarizer takes a vector of outputs from estimator

Outputs: Summary of the simulated distribution of estimates
summarize.sampling.dist.of.estimates <- function(B,simulator,estimator,

summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

The name is too long, of course, so we should replace it with something catchier:

bootstrap <- function(B,simulator,estimator,summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

Our very first example is equivalent to

bootstrap(B=100,simulator=simulator.1,estimator=median,summarizer=sd)

22:41 Wednesday 6th February, 2013

529 A.9. GENERAL ADVICE ON PROGRAMMING

bootstrap is just two lines: one simulates and re-estimates, the other summarizes
the re-estimates. This is the essence of what we are trying to do, and is logically
distinct from the details of particular simulators, estimators and summaries.

We started with a particular special case and generalized it. The alternative route
is to start with a very general framework — here, writing bootstrap — and then
figure out what lower-level functions we would need to make it work in a the case
at hand, writing them if necessary. (We need to write a simulator, but someone’s
already written median for us.) Getting the first stage right involves a certain amount
of reflection on how to solve the problem — it’s rather like the strategy of doing
a “show that” math problem by starting from the desired conclusion and working
backwards.

It is still somewhat clunky to have to write a new function every time we want to
change the settings in the simulation, but this has gone on long enough.

A.9 General Advice on Programming
Programming is an act of communication: with the computer, of course, but also
with your co-workers, and with yourself in the future10. Clear and effective commu-
nication is a valuable skill in itself; it also tends to make it easier to do the job, and to
make debugging easier.

A.9.1 Comment your code
Comments lengthen your file, but they make it immensely easier for other people
to understand. (“Other people” includes your future self; there are few experiences
more frustrating than coming back to a program after a break only to wonder what
you were thinking.) Comments should say what each part of the code does, and how
it does it. The “what” is more important; you can change the “how” more often and
more easily.

Every function (or subroutine, etc.) should have comments at the beginning say-
ing:

• what it does;

• what all its inputs are (in order);

• what it requires of the inputs and the state of the system (“presumes”);

• what side-effects it may have (e.g., “plots histogram of residuals”);

• what all its outputs are (in order)

Listing what other functions or routines the function calls (“dependencies”) is op-
tional; this can be useful, but it’s easy to let it get out of date.

You should treat “Thou shalt comment thy code” as a commandment which
Moses brought down from Mt. Sinai, written on stone by a fiery Hand.

10And, in this class, with your graders.

22:41 Wednesday 6th February, 2013

A.9. GENERAL ADVICE ON PROGRAMMING 530

A.9.2 Use meaningful names

Unlike some older languages, R lets you give variables and functions names of essen-
tially arbitrary length and form. So give them meaningful names. Writing loglikelihood,
or even loglike, instead of L makes your code a little longer, but generally a lot
clearer, and it runs just the same.

This rule is lower down in the list because there are exceptions and qualifications.
If your code is tightly associated to a mathematical paper, or to a field where certain
symbols are conventionally bound to certain variables, you may as well use those
names (e.g., call the probability of success in a binomial p). You should, however,
explain what those symbols are in your comments. In fact, since what you regard
as a meaningful name may be obscure to others (e.g., those grading your work), you
should use comments to explain variables in any case. Finally, it’s OK to use single-
letter variable names for counters in loops (but see the advice on iteration below).

A.9.3 Check whether your program works

It’s not a enough — in fact it’s very little — to have a program which runs and gives
you some output. It needs to be the right output. You should therefore construct
tests, which are things that the correct program should be able to do, but an incorrect
program should not. This means that:

• you need to be able to check whether the output is right;

• your tests should be reasonably severe, so that it’s hard for an incorrect pro-
gram to pass them;

• your tests should help you figure out what isn’t working;

• you should think hard about programming the test, so it checks whether the
output is right, and you can easily repeat the test as many times as you need.

Try to write tests for the component functions, as well as the program as a whole.
That way you can see where failures are. Also, it’s easier to figure out what the right
answers should be for small parts of the problem than the whole.

Try to write tests as very small function which call the component you’re testing
with controlled input values. For instance, we tested qpareto by looking at what it
returned for selected arguments with manually carrying out the computation. With
statistical procedures, tests can look at average or distributional results — we saw an
example of this with checking rpareto.

Of course, unless you are very clever, or the problem is very simple, a program
could pass all your tests and still be wrong, but a program which fails your tests is
definitely not right.

(Some people would actually advise writing your tests before writing any actual
functions. They have their reasons but I think that’s overkill for this class.)

22:41 Wednesday 6th February, 2013

531 A.9. GENERAL ADVICE ON PROGRAMMING

A.9.4 Avoid writing the same thing twice
Many data-analysis tasks involve doing the same thing multiple times, either as iter-
ation, or to slightly different pieces of data, or with some parameters adjusted, etc.
Try to avoid writing two pieces of code to do the same job. If you find yourself copy-
ing the same piece of code into two places in your program, look into writing one
function, and calling it twice.

Doing this means that there is only one place to make a mistake, rather than
many. It also means that when you fix your mistake, you only have one piece of code
to correct, rather than many. (Even if you don’t make a mistake, you can always
make improvements, and then there’s only one piece of code you have to work on.)
It also leads to shorter, more comprehensible and more adaptable code.

A.9.5 Start from the beginning and break it down
When you have a big problem, start by thinking about what you want your program
to do. Then figure out a set of slightly smaller steps which, put together, would
accomplish that. Then take each of those steps and break them down into yet smaller
ones. Keep going until the pieces you’re left with are so small that you can see how to
do each of them with only a few lines of code. Then write the code for the smallest
bits, check it, once it works write the code for the next larger bits, and so on.

In slogan form:

• Think before you write.

• What first, then how.

• Design from the top down, code from the bottom up.

(Not everyone likes to design code this way, and it’s not in the written-in-stone-
atop-Sinai category, but there are many much worse ways to start.)

A.9.6 Break your code into many short, meaningful functions
Since you have broken your programming problem into many small pieces, try to
make each piece a short function. (In other languages you might make them subrou-
tines or methods, but in R they should be functions.)

Each function should achieve a single coherent task — its function, if you will.
The division of code into functions should respect this division of the problem into
sub-problems. More exactly, the way you break your code into functions is how you
have divided your problem.

Each function should be short, generally less than a page of print-out. The func-
tion should do one single meaningful thing. (Do not just break the calculation into
arbitrary thirty-line chunks and call each one a function.) These functions should
generally be separate, not nested one inside the other.

Using functions has many advantages:

• you can re-use the same code many times, either at different places in this pro-
gram or in other programs

22:41 Wednesday 6th February, 2013

A.10. FURTHER READING 532

• the rest of your code only has to care about the inputs and outputs to the
function (its interfaces), not about the internal machinery that turns inputs
into outputs. This makes it easier to design the rest of the program, and it
means you can change that machinery without having to re-design the rest of
the program.

• it makes your code easier to test (see below), to debug, and to understand.

Of course, every function should be commented, as described above.

A.10 Further Reading
Matloff (2011) is a good introduction to programming for total novices using R.
Braun and Murdoch (2008) has more on statistical calculations and related topics,
but can also work as an introduction for absolute beginners. Adler (2009) is an intro-
duction to R for those with some prior knowledge of other programming languages.
Chambers (2008) is excellent for anyone who wants to be serious about programming
in R.

22:41 Wednesday 6th February, 2013

