
14:51 Friday 18th January, 2013

Chapter 2

The Truth about Linear
Regression

We need to say some more about how linear regression, and especially about how it
really works and how it can fail. Linear regression is important because

1. it’s a fairly straightforward technique which often works reasonably well for
prediction;

2. it’s a simple foundation for some more sophisticated techniques;

3. it’s a standard method so people use it to communicate; and

4. it’s a standard method so people have come to confuse it with prediction and
even with causal inference as such.

We need to go over (1)–(3), and provide prophylaxis against (4).
A very good resource on regression is Berk (2004). It omits technical details, but

is superb on the high-level picture, and especially on what must be assumed in order
to do certain things with regression, and what cannot be done under any assumption.

2.1 Optimal Linear Prediction: Multiple Variables
We have a response variable Y and a p-dimensional vector of predictor variables or
features ~X . To simplify the book-keeping, we’ll take these to be centered — we can al-
ways un-center them later. We would like to predict Y using ~X . We saw last time that
the best predictor we could use, at least in a mean-squared sense, is the conditional
expectation,

r (~x) = E
î

Y |~X = ~x
ó

(2.1)

Instead of using the optimal predictor r (~x), let’s try to predict as well as possible
while using only a linear function of ~x, say ~x ·�. This is not an assumption about the
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37 2.1. OPTIMAL LINEAR PREDICTION: MULTIPLE VARIABLES

world, but rather a decision on our part; a choice, not a hypothesis. This decision can
be good — ~x ·� could be a close approximation to r (~x)— even if the linear hypothesis
is wrong.

One reason to think it’s not a crazy decision is that we may hope r is a smooth
function. If it is, then we can Taylor expand it about our favorite point, say ~u:

r (~x) = r (~u)+
pX

i=1

 
@ r
@ xi

�����
~u

!
(xi � ui )+O(k~x � ~uk2) (2.2)

or, in the more compact vector-calculus notation,

r (~x) = r (~u)+ (~x � ~u) ·rr (~u)+O(k~x � ~uk2) (2.3)

If we only look at points ~x which are close to ~u, then the remainder terms O(k~x � ~uk2)
are small, and a linear approximation is a good one1.

Of course there are lots of linear functions so we need to pick one, and we may
as well do that by minimizing mean-squared error again:

M SE(�) = E
ïÄ

Y � ~X ·�
ä2
ò

(2.4)

Going through the optimization is parallel to the one-dimensional case (see last chap-
ter), with the conclusion that the optimal � is

�= v�1Cov
î
~X ,Y

ó
(2.5)

where v is the covariance matrix of ~X , i.e., vi j = Cov
î

Xi ,Xj

ó
, and Cov

î
~X ,Y

ó
is

the vector of covariances between the predictor variables and Y , i.e. Cov
î
~X ,Y

ó
i
=

Cov
⇥

Xi ,Y
⇤

.
Multiple regression would be a lot simpler if we could just do a simple regression

for each predictor variable, and add them up; but really, this is what multiple regres-
sion does, just in a disguised form. If the input variables are uncorrelated, v is diagonal
(vi j = 0 unless i = j ), and so is v�1. Then doing multiple regression breaks up into
a sum of separate simple regressions across each input variable. When the input vari-
ables are correlated and v is not diagonal, we can think of the multiplication by v�1

as de-correlating ~X — applying a linear transformation to come up with a new set of
inputs which are uncorrelated with each other.2

Notice: � depends on the marginal distribution of ~X (through the covariance
matrix v). If that shifts, the optimal coefficients�will shift, unless the real regression
function is linear.

1If you are not familiar with the big-O notation like O(k~x � ~uk2), now would be a good time to read
Appendix B.

2If ~Z is a random vector with covariance matrix I , then w~Z is a random vector with covariance matrix
wT w. Conversely, if we start with a random vector ~X with covariance matrix v, the latter has a “square
root” v1/2 (i.e., v1/2v1/2 = v), and v�1/2 ~X will be a random vector with covariance matrix I. When we
write our predictions as ~X v�1Cov

î
~X ,Y

ó
, we should think of this as

Ä
~X v�1/2

äÄ
v�1/2Cov

î
~X ,Y

óä
. We

use one power of v�1/2 to transform the input features into uncorrelated variables before taking their
correlations with the response, and the other power to decorrelate ~X .
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2.1. OPTIMAL LINEAR PREDICTION: MULTIPLE VARIABLES 38

2.1.1 Collinearity

The formula � = v�1Cov
î
~X ,Y

ó
makes no sense if v has no inverse. This will

happen if, and only if, the predictor variables are linearly dependent on each other
— if one of the predictors is really a linear combination of the others. Then (as we
learned in linear algebra) the covariance matrix is of less than “full rank” (i.e., “rank
deficient”) and it doesn’t have an inverse.

So much for the algebra; what does that mean statistically? Let’s take an easy case
where one of the predictors is just a multiple of the others — say you’ve included
people’s weight in pounds (X1) and mass in kilograms (X2), so X1 = 2.2X2. Then if
we try to predict Y , we’d have

Ŷ = �1X1+�2X2+�3X3+ . . .+�p Xp (2.6)

= 0X1+ (2.2�1+�2)X2+
pX

i=3
�i Xi (2.7)

= (�1+�2/2.2)X1+ 0X2+
pX

i=3
�i Xi (2.8)

= �2200X1+ (1000+�1+�2)X2+
pX

i=3
�i Xi (2.9)

In other words, because there’s a linear relationship between X1 and X2, we make the
coefficient for X1 whatever we like, provided we make a corresponding adjustment
to the coefficient for X2, and it has no effect at all on our prediction. So rather than
having one optimal linear predictor, we have infinitely many of them.

There are three ways of dealing with collinearity. One is to get a different data set
where the predictor variables are no longer collinear. A second is to identify one of
the collinear variables (it doesn’t matter which) and drop it from the data set. This can
get complicated; principal components analysis (Chapter 17) can help here. Thirdly,
since the issue is that there are infinitely many different coefficient vectors which
all minimize the MSE, we could appeal to some extra principle, beyond prediction
accuracy, to select just one of them, e.g., try to set as many of the coefficients to zero
as possible (Appendix E.4.1).

2.1.2 The Prediction and Its Error
Once we have coefficients �, we can use them to make predictions for the expected
value of Y at arbitrary values of ~X , whether we’ve an observation there before or not.
How good are these?

If we have the optimal coefficients, then the prediction error will be uncorrelated
with the predictor variables:

Cov
î

Y � ~X ·�, ~X
ó
= Cov

î
Y, ~X

ó
�Cov

î
~X · (v�1Cov

î
~X ,Y

ó
), ~X
ó

(2.10)

= Cov
î

Y, ~X
ó
� vv�1Cov

î
Y, ~X

ó
(2.11)

= 0 (2.12)
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39 2.1. OPTIMAL LINEAR PREDICTION: MULTIPLE VARIABLES

Moreover, the expected prediction error, averaged over all ~X , will be zero (exercise).
In general, however, the conditional expectation of the error is not zero,

E
î

Y � ~X ·� | ~X = ~x
ó
6= 0 (2.13)

and the conditional variance is not constant in ~x,

Var
î

Y � ~X ·� | ~X = ~x1

ó
6=Var

î
Y � ~X ·� | ~X = ~x2

ó
(2.14)

2.1.3 Estimating the Optimal Linear Predictor

To actually estimate � from data, we need to make some probabilistic assumptions
about where the data comes from. A quite weak but sufficient assumption is that
observations (~Xi ,Yi ) are independent for different values of i , with unchanging co-
variances. Then if we look at the sample covariances, they will, by the law of large
numbers, converge on the true covariances:

1
n

xT y ! Cov
î
~X ,Y

ó
(2.15)

1
n

xT x ! v (2.16)

where as before x is the data-frame matrix with one row for each data point and one
column for each feature, and similarly for y.

So, by continuity,
b�= (xT x)�1xT y!� (2.17)

and we have a consistent estimator.
On the other hand, we could start with the residual sum of squares

RSS(�)⌘
nX

i=1

�
yi �~xi ·�

�2 (2.18)

and try to minimize it. The minimizer is the same b� we got by plugging in the
sample covariances. No probabilistic assumption is needed to minimize the RSS, but
it doesn’t let us say anything about the convergence of b�. For that, we do need some
assumptions about ~X and Y coming from distributions with unchanging covariances.

(One can also show that the least-squares estimate is the linear prediction with
the minimax prediction risk. That is, its worst-case performance, when everything
goes wrong and the data are horrible, will be better than any other linear method.
This is some comfort, especially if you have a gloomy and pessimistic view of data,
but other methods of estimation may work better in less-than-worst-case scenarios.)
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2.1. OPTIMAL LINEAR PREDICTION: MULTIPLE VARIABLES 40

2.1.3.1 Unbiasedness and Variance of Ordinary Least Squares Estimates

The very weak assumptions we have made are still strong enough to let us say a little
bit more about the properties of the ordinary least squares estimate b�. To do so, we
need to think

To get at the variance of b�, we need to think a little bit about why it fluctuates.
For the moment, let’s take x as fixed, but allow Y to vary randomly.

The key fact is that b� is linear in the observed responses y. We can use this by
writing, as you’re used to from your linear regression class,

Y = ~X ·�+ ✏ (2.19)

We just have to remember that while E[✏] = 0 and Cov
î
✏, ~X

ó
= 0, it is not gener-

ally true that E
î
✏|~X = ~x = 0

ó
or that Var

î
✏|~X = ~x

ó
is constant. Even with these

limitations, we can still say that

b� = (xT x)�1xT Y (2.20)

= (xT x)�1xT (x�+ ✏) (2.21)

= �+ (xT x)�1xT ✏ (2.22)

This directly tells us that b� is unbiased:

E
h b�|x

i
= �+ (xT x)�1xT E[✏] (2.23)

= �+ 0=� (2.24)

We can also get the variance matrix of b�:

Var
h b�|x

i
= Var

h
�+ (xT x)�1xT ✏ | x

i
(2.25)

= Var
h
(xT x)�1xT ✏ | x

i
(2.26)

= (xT x)�1xT Var[✏ | x]x(xT x)�1 (2.27)

Let’s write Var[✏|x] as a single matrix ⌃(x). If the linear-prediction errors are un-
correlated with each other, then ⌃ will be diagonal. If they’re also of equal variance,
then ⌃= �2I, and we have

Var
h b�|x

i
= �2(xT x)�1 (2.28)

and (by the law of total variance)

Var
h b�
i
=
�2

n
v�1 (2.29)

Said in words, this means that the variance of our estimates of the linear-regression
coefficient will (i) go down with the sample size n, (ii) go up as the linear regression
gets worse (�2 grows), and (iii) go down as the predictor variables, the components of
~X , have more variance themselves, and are more nearly uncorrelated with each other.
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TRANSFORMATIONS

2.2 Shifting Distributions, Omitted Variables, and Trans-
formations

2.2.1 Changing Slopes
I said earlier that the best � in linear regression will depend on the distribution of
the predictor variable, unless the conditional mean is exactly linear. Here is an illus-
tration. For simplicity, let’s say that p = 1, so there’s only one predictor variable. I
generated data from Y =

p
X + ✏, with ✏ ⇠ N (0,0.052) (i.e. the standard deviation

of the noise was 0.05).
Figure 2.1 shows the regression lines inferred from samples with three different

distributions of X : the black points are X ⇠Unif(0,1), the blue are X ⇠N (0.5,0.01)
and the red X ⇠ Unif(2,3). The regression lines are shown as colored solid lines;
those from the blue and the black data are quite similar — and similarly wrong. The
dashed black line is the regression line fitted to the complete data set. Finally, the
light grey curve is the true regression function, r (x) =

p
x.

2.2.1.1 R2: Distraction or Nuisance?

This little set-up, by the way, illustrates that R2 is not a stable property of the distri-
bution either. For the black points, R2 = 0.92; for the blue, R2 = 0.70; and for the red,
R2 = 0.77; and for the complete data, 0.96. Other sets of xi values would give other
values for R2. Note that while the global linear fit isn’t even a good approximation
anywhere in particular, it has the highest R2.

This kind of perversity can happen even in a completely linear set-up. Suppose
now that Y = aX + ✏, and we happen to know a exactly. The variance of Y will be
a2Var[X ] +Var[✏]. The amount of variance our regression “explains” — really, the
variance of our predictions —- will be a2Var[X ]. So R2 = a2Var[X ]

a2Var[X ]+Var[✏] . This goes
to zero as Var[X ]! 0 and it goes to 1 as Var[X ]!1. It thus has little to do with
the quality of the fit, and a lot to do with how spread out the independent variable is.

Notice also how easy it is to get a very high R2 even when the true model is not
linear!

2.2.2 Omitted Variables and Shifting Distributions
That the optimal regression coefficients can change with the distribution of the pre-
dictor features is annoying, but one could after all notice that the distribution has
shifted, and so be cautious about relying on the old regression. More subtle is that
the regression coefficients can depend on variables which you do not measure, and
those can shift without your noticing anything.

Mathematically, the issue is that

E
î

Y |~X
ó
= E

î
E
î

Y |Z , ~X
ó
|~X
ó

(2.30)

Now, if Y is independent of Z given ~X , then the extra conditioning in the inner
expectation does nothing and changing Z doesn’t alter our predictions. But in general
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Figure 2.1: Behavior of the conditioning distribution Y |X ⇠ N (
p

X , 0.052) with
different distributions of X . Black circles: X is uniformly distributed in the unit
interval. Blue triangles: Gaussian with mean 0.5 and standard deviation 0.1. Red
squares: uniform between 2 and 3. Axis tick-marks show the location of the actual
sample points. Solid colored lines show the three regression lines obtained by fitting
to the three different data sets; the dashed line is from fitting to all three. The grey
curve is the true regression function. (See accompanying R file for commands used
to make this figure.)
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there will be plenty of variables Z which we don’t measure (so they’re not included
in ~X ) but which have some non-redundant information about the response (so that
Y depends on Z even conditional on ~X ). If the distribution of Z given ~X changes,
then the optimal regression of Y on ~X should change too.

Here’s an example. X and Z are both N (0,1), but with a positive correlation
of 0.1. In reality, Y ⇠ N (X + Z , 0.01). Figure 2.2 shows a scatterplot of all three
variables together (n = 100).

Now I change the correlation between X and Z to�0.1. This leaves both marginal
distributions alone, and is barely detectable by eye (Figure 2.3).

Figure 2.4 shows just the X and Y values from the two data sets, in black for the
points with a positive correlation between X and Z , and in blue when the correlation
is negative. Looking by eye at the points and at the axis tick-marks, one sees that, as
promised, there is very little change in the marginal distribution of either variable.
Furthermore, the correlation between X and Y doesn’t change much, going only
from 0.75 to 0.74. On the other hand, the regression lines are noticeably different.
When Cov[X ,Z] = 0.1, the slope of the regression line is 1.2 — high values for X
tend to indicate high values for Z , which also increases Y . When Cov[X ,Z] =�0.1,
the slope of the regression line is 0.80, because now extreme values of X are signs that
Z is at the opposite extreme, bringing Y closer back to its mean. But, to repeat, the
difference here is due to a change in the correlation between X and Z , not how those
variables themselves relate to Y . If I regress Y on X and Z , I get b� = (0.99,0.99) in
the first case and b�= (0.99,0.99) in the second.

We’ll return to this issue of omitted variables when we look at causal inference in
Part III.

2.2.3 Errors in Variables
It is often the case that the input features we can actually measure, ~X , are distorted
versions of some other variables ~U we wish we could measure, but can’t:

~X = ~U +~⌘ (2.31)

with ~⌘ being some sort of noise. Regressing Y on ~X then gives us what’s called an
errors-in-variables problem.

In one sense, the errors-in-variables problem is huge. We are often much more
interested in the connections between actual variables in the real world, than with our
imperfect, noisy measurements of them. Endless ink has been spilled, for instance,
on what determines students’ examination scores. One thing commonly thrown
into the regression — a feature included in ~X — is the income of children’s families.
But this is typically not measured with absolute precision3, so what we are really
interested in — the relationship between actual income and school performance — is
not what we are estimating in our regression. Typically, adding noise to the input

3One common proxy is to ask the child what they think their family income is. (I didn’t believe that
either when I first heard about it.)
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X

Z

Y

Figure 2.2: Scatter-plot of response variable Y (vertical axis) and two variables which
influence it (horizontal axes): X , which is included in the regression, and Z , which
is omitted. X and Z have a correlation of +0.1. (Figure created using the cloud
command in the package lattice; see accompanying R file.)
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X
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Y

Figure 2.3: As in Figure 2.2, but shifting so that the correlation between X and Z is
now �0.1, though the marginal distributions, and the distribution of Y given X and
Z , are unchanged. (See accompanying R file for commands used to make this figure.)
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Figure 2.4: Joint distribution of X and Y from Figure 2.2 (black, with a positive
correlation between X and Z) and from Figure 2.3 (blue, with a negative correlation
between X and Z). Tick-marks on the axes show the marginal distributions, which
are manifestly little-changed. (See accompanying R file for commands.)
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features makes them less predictive of the response — in linear regression, it tends to
push b� closer to zero than it would be if we could regress Y on ~U .

On account of the error-in-variables problem, some people get very upset when
they see imprecisely-measured features as inputs to a regression. Some of them, in
fact, demand that the input variables be measured exactly, with no noise whatsoever.

This position, however, is crazy, and indeed there’s a sense where it isn’t actually
a problem at all. Our earlier reasoning about how to find the optimal linear predictor
of Y from ~X remains valid whether something like Eq. 2.31 is true or not. Similarly,
the reasoning last time about the actual regression function being the over-all optimal
predictor, etc., is unaffected. If in the future we will continue to have ~X rather than
~U available to us for prediction, then Eq. 2.31 is irrelevant for prediction. Without
better data, the relationship of Y to ~U is just one of the unanswerable questions the
world is full of, as much as “what song the sirens sang, or what name Achilles took
when he hid among the women”.

Now, if you are willing to assume that ~⌘ is a very nicely behaved Gaussian and you
know its variance, then there are standard solutions to the error-in-variables problem
for linear regression — ways of estimating the coefficients you’d get if you could
regress Y on ~U . I’m not going to go over them, partly because they’re in standard
textbooks, but mostly because the assumptions are hopelessly demanding.4

2.2.4 Transformation
Let’s look at a simple non-linear example, Y |X ⇠ N (logX , 1). The problem with
smoothing data from this source on to a straight line is that the true regression curve
isn’t very straight, E[Y |X = x] = log x. (Figure 2.5.) This suggests replacing the
variables we have with ones where the relationship is linear, and then undoing the
transformation to get back to what we actually measure and care about.

We have two choices: we can transform the response Y , or the predictor X . Here
transforming the response would mean regressing expY on X , and transforming the
predictor would mean regressing Y on logX . Both kinds of transformations can be
worth trying, but transforming the predictors is, in my experience, often a better bet,
for three reasons.

1. Mathematically, E[ f (Y )] 6= f (E[Y ]). A mean-squared optimal prediction of
f (Y ) is not necessarily close to the transformation of an optimal prediction of
Y . And Y is, presumably, what we really want to predict. (Here, however, it
works out.)

2. Imagine that Y =
p

X + logZ . There’s not going to be any particularly nice
transformation of Y that makes everything linear; though there will be trans-
formations of the features.

3. This generalizes to more complicated models with features built from multiple
covariates.

4Non-parametric error-in-variable methods are an active topic of research (Carroll et al., 2009).
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x <- runif(100)
y <- rnorm(100,mean=log(x),sd=1)
plot(y~x)
curve(log(x),add=TRUE,col="grey")
abline(lm(y~x))

Figure 2.5: Sample of data for Y |X ⇠N (logX , 1). (Here X ⇠Unif(0,1), and all logs
are natural logs.) The true, logarithmic regression curve is shown in grey (because
it’s not really observable), and the linear regression fit is shown in black.
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49 2.3. ADDING PROBABILISTIC ASSUMPTIONS

Figure 2.6 shows the effect of these transformations. Here transforming the pre-
dictor does, indeed, work out more nicely; but of course I chose the example so that
it does so.

To expand on that last point, imagine a model like so:

r (~x) =
qX

j=1
c j f j (~x) (2.32)

If we know the functions f j , we can estimate the optimal values of the coefficients c j
by least squares — this is a regression of the response on new features, which happen
to be defined in terms of the old ones. Because the parameters are outside the func-
tions, that part of the estimation works just like linear regression. Models embraced
under the heading of Eq. 2.32 include linear regressions with interactions between
the independent variables (set f j = xi xk , for various combinations of i and k), and
polynomial regression. There is however nothing magical about using products and
powers of the independent variables; we could regress Y on sin x, sin2x, sin3x, etc.

To apply models like Eq. 2.32, we can either (a) fix the functions f j in advance,
based on guesses about what should be good features for this problem; (b) fix the
functions in advance by always using some “library” of mathematically convenient
functions, like polynomials or trigonometric functions; or (c) try to find good func-
tions from the data. Option (c) takes us beyond the realm of linear regression as such,
into things like splines (Chapter 8) and additive models (Chapter 9). Later, after we
have seen how additive models work, we’ll examine how to automatically search for
transformations of both sides of a regression model.

2.3 Adding Probabilistic Assumptions
The usual treatment of linear regression adds many more probabilistic assumptions.
Specifically, the assumption is that

Y |~X ⇠N (~X ·�,�2) (2.33)

with all Y values being independent conditional on their ~X values. So now we are
assuming that the regression function is exactly linear; we are assuming that at each ~X
the scatter of Y around the regression function is Gaussian; we are assuming that the
variance of this scatter is constant; and we are assuming that there is no dependence
between this scatter and anything else.

None of these assumptions was needed in deriving the optimal linear predictor.
None of them is so mild that it should go without comment or without at least some
attempt at testing.

Leaving that aside just for the moment, why make those assumptions? As you
know from your earlier classes, they let us write down the likelihood of the observed
responses y1, y2, . . . yn (conditional on the covariates ~x1, . . .~xn), and then estimate �
and �2 by maximizing this likelihood. As you also know, the maximum likelihood
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Figure 2.6: Transforming the predictor (left column) and the response (right column)
in the data from Figure 2.5, displayed in both the transformed coordinates (top row)
and the original coordinates (middle row). The bottom row super-imposes the two
estimated curves (transformed X in black, transformed Y in blue). The true regres-
sion curve is always shown in grey. (R code deliberately omitted; can you reproduce
this?)
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51 2.3. ADDING PROBABILISTIC ASSUMPTIONS

estimate of� is exactly the same as the� obtained by minimizing the residual sum of
squares. This coincidence would not hold in other models, with non-Gaussian noise.

We saw earlier that b� is consistent under comparatively weak assumptions —
that it converges to the optimal coefficients. But then there might, possibly, still be
other estimators are also consistent, but which converge faster. If we make the extra
statistical assumptions, so that b� is also the maximum likelihood estimate, we can
lay that worry to rest. The MLE is generically (and certainly here!) asymptotically
efficient, meaning that it converges as fast as any other consistent estimator, at least
in the long run. So we are not, so to speak, wasting any of our data by using the
MLE.

A further advantage of the MLE is that, as n ! 1, its sampling distribution is
itself a Gaussian, centered around the true parameter values. This lets us calculate
standard errors and confidence intervals quite easily. Here, with the Gaussian as-
sumptions, much more exact statements can be made about the distribution of b�
around �. You can find the formulas in any textbook on regression, so I won’t get
into that.

We can also use a general property of MLEs for model testing. Suppose we have
two classes of models, ⌦ and !. ⌦ is the general case, with p parameters, and ! is a
special case, where some of those parameters are constrained, but q < p of them are
left free to be estimated from the data. The constrained model class! is then nested
within ⌦. Say that the MLEs with and without the constraints are, respectively, b⇥
and b✓, so the maximum log-likelihoods are L(b⇥) and L(b✓). Because it’s a maximum
over a larger parameter space, L(b⇥) � L(b✓). On the other hand, if the true model
really is in !, we’d expect the unconstrained estimate and the constrained estimate
to be coming closer and closer. It turns out that the difference in log-likelihoods has
an asymptotic distribution which doesn’t depend on any of the model details, namely

2
h

L(b⇥)� L(b✓)
i
† � 2

p�q (2.34)

That is, a � 2 distribution with one degree of freedom for each extra parameter in ⌦
(that’s why they’re called “degrees of freedom”).5

This approach can be used to test particular restrictions on the model, and so it
is sometimes used to assess whether certain variables influence the response. This,
however, gets us into the concerns of the next section.

2.3.1 Examine the Residuals
By construction, the residuals of a fitted linear regression have mean zero and are
uncorrelated with the independent variables. If the usual probabilistic assumptions
hold, however, they have many other properties as well.

1. The residuals have a Gaussian distribution at each ~x.
5If you assume the noise is Gaussian, the left-hand side of Eq. 2.34 can be written in terms of various

residual sums of squares. However, the equation itself remains valid under other noise distributions, which
just change the form of the likelihood function. See Appendix C.
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2. The residuals have the same Gaussian distribution at each ~x, i.e., they are in-
dependent of the predictor variables. In particular, they must have the same
variance (i.e., they must be homoskedastic).

3. The residuals are independent of each other. In particular, they must be uncorre-
lated with each other.

These properties — Gaussianity, homoskedasticity, lack of correlation — are all testable
properties. When they all hold, we say that the residuals are white noise. One would
never expect them to hold exactly in any finite sample, but if you do test for them
and find them strongly violated, you should be extremely suspicious of your model.
These tests are much more important than checking whether the coefficients are sig-
nificantly different from zero.

Every time someone uses linear regression with the standard assumptions for in-
ference and does not test whether the residuals are white noise, an angel loses its
wings.

2.3.2 On Significant Coefficients
If all the usual distributional assumptions hold, then t -tests can be used to decide
whether particular coefficients are statistically-significantly different from zero. Pretty
much any piece of statistical software, R very much included, reports the results of
these tests automatically. It is far too common to seriously over-interpret those re-
sults, for a variety of reasons.

Begin with what hypothesis, exactly, is being tested when R (or whatever) runs
those t-tests. Say, without loss of generality, that there are p predictor variables, ~X =
(X1, . . .Xp ), and that we are testing the coefficient on Xp . Then the null hypothesis
is not just “�p = 0”, but “�p = 0 in a linear model which also includes X1, . . .Xp”.
The alternative hypothesis is not “�p 6= 0”, but “�p 6= 0 in a model which also
includes X1, . . .Xp”. The optimal linear coefficient on Xp will depend on not just on
the relationship between Xp and the response Y , but also on what other variables
are included in the model. The t -test checks whether adding Xp really improves
predictions if one is already using all the other variables — whether it helps prediction
“at the margin”, not whether Xp is important in any absolute sense.

Even if you are willing to say “Yes, all I really want to know about this variable
is whether adding it to the model really helps me predict”, bear in mind that the
question being addressed by the t -test is whether adding that variable will help at all.
Of course, as you know from your regression class, and as we’ll see in more detail
next time, expanding the model never hurts its performance on the training data.
The point of the t -test is to gauge whether the improvement in prediction is small
enough to be due to chance, or so large, compared to what noise could produce, that
one could confidently say the variable adds some predictive ability. This has several
implications which are insufficiently appreciated among users.

In the first place, tests on individual coefficients can seem to contradict tests on
groups of coefficients. Adding a set of variables together to the model could sig-
nificantly improve the fit (as checked by, say, a partial F test), even if none of the
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coefficients is itself significant. In fact, every single coefficient in the model could be
insignificant, while the model as a whole is highly significant.

In the second place, it’s worth thinking about which variables will show up as
statistically significant. Remember that the t -statistic is b�i/se( b�i ), the ratio of the
estimated coefficient to its standard error. We saw above that Var

h b�
i
= �2

n v�1. This
means that the standard errors will be shrink as the sample size grows, so more and
more variables will become significant as we get more data — but how much data
we collect is irrelevant to how the process we’re studying actually works. Moreover,
at a fixed sample size, the coefficients with smaller standard errors will tend to be
the ones whose variables have more variance, and whose variables are less correlated
with the other predictors. High input variance and low correlation help us estimate
the coefficient precisely, but, again, they have nothing to do with whether the input
variable is actually very closely related to the response.

To sum up, it is never the case that statistical significance is the same as scientific,
real-world significance. Statistical significance is always about what “signals” can be
picked out clearly from background noise. In the case of linear regression coeffi-
cients, statistical significance runs together the size of the coefficients, how bad the
linear regression model is, the sample size, the variance in the input variable, and the
correlation of that variable with all the others.

Of course, even the limited “does it help predictions enough to bother with?”
utility of the usual t -test (and F -test) calculations goes away if the standard distribu-
tional assumptions do not hold, so that the calculated p-values are just wrong. One
can sometimes get away with using bootstrapping (Chapter 6) to get accurate p-values
for standard tests under non-standard conditions.

2.4 Linear Regression Is Not the Philosopher’s Stone
The philosopher’s stone, remember, was supposed to be able to transmute base met-
als (e.g., lead) into the perfect metal, gold (Eliade, 1971). Many people treat linear
regression as though it had a similar ability to transmute a correlation matrix into a
scientific theory. In particular, people often argue that:

1. because a variable has a non-zero regression coefficient, it must influence the
response;

2. because a variable has a zero regression coefficient, it must not influence the
response;

3. if the independent variables change, we can predict how much the response
will change by plugging in to the regression.

All of this is wrong, or at best right only under very particular circumstances.
We have already seen examples where influential variables have regression coef-

ficients of zero. We have also seen examples of situations where a variable with no
influence has a non-zero coefficient (e.g., because it is correlated with an omitted
variable which does have influence). If there are no nonlinearities and if there are
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no omitted influential variables and if the noise terms are always independent of the
predictor variables, are we good?

No. Remember from Equation 2.5 that the optimal regression coefficients de-
pend on both the marginal distribution of the predictors and the joint distribution
(covariances) of the response and the predictors. There is no reason whatsoever to
suppose that if we change the system, this will leave the conditional distribution of
the response alone.

A simple example may drive the point home. Suppose we surveyed all the cars
in Pittsburgh, recording the maximum speed they reach over a week, and how often
they are waxed and polished. I don’t think anyone doubts that there will be a positive
correlation here, and in fact that there will be a positive regression coefficient, even if
we add in many other variables as predictors. Let us even postulate that the relation-
ship is linear (perhaps after a suitable transformation). Would anyone believe that
waxing cars will make them go faster? Manifestly not. But this is exactly how people
interpret regressions in all kinds of applied fields — instead of saying waxing makes
cars go faster, it might be saying that receiving targeted ads makes customers buy
more, or that consuming dairy foods makes diabetes progress faster, or . . . . Those
claims might be true, but the regressions could easily come out the same way if the
claims were false. Hence, the regression results provide little or no evidence for the
claims.

Similar remarks apply to the idea of using regression to “control for” extra vari-
ables. If we are interested in the relationship between one predictor, or a few pre-
dictors, and the response, it is common to add a bunch of other variables to the
regression, to check both whether the apparent relationship might be due to correla-
tions with something else, and to “control for” those other variables. The regression
coefficient this is interpreted as how much the response would change, on average, if
the independent variable were increased by one unit, “holding everything else con-
stant”. There is a very particular sense in which this is true: it’s a prediction about
the changes in the conditional of the response (conditional on the given values for
the other predictors), assuming that observations are randomly drawn from the same
population we used to fit the regression.

In a word, what regression does is probabilistic prediction. It says what will hap-
pen if we keep drawing from the same population, but select a sub-set of the obser-
vations, namely those with given values of the independent variables. A causal or
counter-factual prediction would say what would happen if we (or Someone) made
those variables take on those values. There may be no difference between selection
and intervention, in which case regression can work as a tool for causal inference6;
but in general there is. Probabilistic prediction is a worthwhile endeavor, but it’s im-
portant to be clear that this is what regression does. There are techniques for doing
actually causal prediction, which we will explore in Part III.

Every time someone thoughtlessly uses regression for causal inference, an angel
not only loses its wings, but is cast out of Heaven and falls in most extreme agony
into the everlasting fire.

6In particular, if we assign values of the independent variables in a way which breaks possible depen-
dencies with omitted variables and noise — either by randomization or by experimental control — then
regression can, in fact, work for causal inference.
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2.5 Exercises
1. Convince yourself that if the real regression function is linear, � does not de-

pend on the marginal distribution of X . You may want to start with the case
of one independent variable.

2. Run the code from Figure 2.5. Then replicate the plots in Figure 2.6.

3. Which kind of transformation is superior for the model where Y |X ⇠N (
p

X , 1)?
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