19:31 Saturday 9 February, 2013

Chapter 5

Simulation

You will recall from your previous statistics courses that quantifying uncertainty in
statistical inference requires us to get at the sampling distributions of things like es-
timators. When the very strong simplifying assumptions of basic statistics courses do
not apply!, or when estimators are themselves complex objects, like kernel regression
curves or even histograms, there is little hope of being able to write down sampling
distributions in closed form. We get around this by using simulation to approximate
the sampling distributions we can’t calculate.

5.1 What Do We Mean by “Simulation”?

A stochastic model is a mathematical story about how the data could have been gen-
erated. Simulating the model means implementing it, step by step, in order to pro-
duce something which should look like the data — what’s sometimes called synthetic
data, or surrogate data, or a realization of the model. In a stochastic model, some
of the steps we need to follow involve a random component, and so multiple simula-
tions starting from exactly the same initial conditions will not give exactly the same
outputs or realizations. Rather, will be a distribution over the realizations. Doing
large numbers of simulations gives us a good estimate of this distribution.

For a trivial example, consider a model with three random variables, X; ~ A (u;,07),
X, ~ N (up,03), with X, 1LX,, and X; = X 4+ X,. Simulating from this model means
drawing a random value from the first normal distribution for X,, drawing a second
random value for X, and adding them together to get X;. The marginal distribution
of Xj, and the joint distribution of (X, X,,X;), are implicit in this specification of
the model, and we can find them by running the simulation.

In this particular case, we could also find the distribution of Xj, and the joint
distribution, by probability calculations of the kind you learned how to do in your
basic probability courses. For instance, X; is A (u; 4 tp, 07 + 0;). These analytical

!In 36-401, you will have seen results about the sampling distribution of linear regression coefficients
when the linear model is true, and the noise is Gaussian with constant variance. As an exercise, try to get
parallel results when the noise has a ¢ distribution with 10 degrees of freedom.

99

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 100

probability calculations can usually be thought of as just short-cuts for exhaustive
simulations.

5.2 How Do We Simulate Stochastic Models?
5.2.1 Chaining Together Random Variables

Stochastic models are usually specified by sets of conditional distributions for one
random variable, given some other variable or variables. For instance, a simple linear
regression model might have the specification

X ~ Ny,op) (5.1)
YIX ~ N(By+BX,00) (5.2)

If we knew how to generate a random variable from the distributions given on the
right-hand sides, we could simulate the whole model by chaining together draws from
those conditional distributions. This is in fact the general strategy for simulating any
sort of stochastic model, by chaining together random variables.?

What this means is that we can reduce the problem of simulating to that of gen-
erating random variables.

5.2.2 Random Variable Generation
5.2.2.1 Built-in Random Number Generators

R provides random number generators for most of the most common distributions.
By convention, the names of these functions all begin with the letter “r”, followed
by the abbreviation of the functions, and the first argument is always the number of

draws to make, followed by the parameters of the distribution:

rnorm(n,mean=0,sd=1) # Gaussian

runif (n,min=0,max=1) # Uniform

rexp(n,rate=1) # Exponential, rate is 1/mean
rpois(n,lambda) # Poisson, lambda is mean
rbinom(n,size,prob) # Binomial

etc., etc. A further convention is that these parameters can be vectorized. Rather
than giving a single mean and standard deviation (say) for multiple draws from the
Gaussian distribution, each draw can have its own:

rnorm(10,mean=1:10,sd=1/sqrt(1:10))

That instance is rather trivial, but the exact same principle would be at work here:

2In this case, we could in principle first generate Y, and then draw from Y|X, but have fun finding
those distributions. Especially have fun if, say, X has a ¢ distribution with 5 degrees of freedom — a very
small change to the specification.

19:31 Saturday 9 February, 2013

101 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

rnorm(nrow(x) ,mean=predict (regression.model,newdata=x),
sd=predict(volatility.model,newdata=x)

where regression.model and volatility.model are previously-defined parts of
the model which tell us about conditional expectations and conditional variances.

Of course, none of this explains how R actually draws from any of these dis-
tributions; it’s all at the level of a black box, which is to say black magic. Because
ignorance is evil, and, even worse, unhelpful when we need to go beyond the standard
distributions, it’s worth open the black box at least a little.

5.2.2.2 Transformations

If we can generate a random variable Z with some distribution, and V = g(Z), then
we can generate V. So one thing which gets a lot of attention is writing random
variables as transformations of one another — ideally as transformations of easy-to-
generate variables.

Example. Suppose we can generate random numbers from the standard Gaussian
distribution Z ~ .A4'(0,1). Then we can generate from A (u,0?) as 0 Z + u. We can
generate y 2 random variables with 1 degree of freedom as Z?. We can generate y?
random variables with d degrees of freedom by summing d independent copies of
VAR

In particular, if we can generate random numbers uniformly distributed between
0 and 1, we can use this to generate anything which is a transformation of a uniform
distribution. How far does that extend?

5.2.2.3 Quantile Method

Suppose that we know the quantile function Q,, for the random variable X we want,
so that Q,(0.5) is the median of X, Q,(0.9) is the 90th percentile, and in general
Q,(p) is bigger than or equal to X with probability p. Q, comes as a pair with the
cumulative distribution function F,, since

Qz(Fy(a)) =a, Fz(Qz(p))=p (5.3)

In the quantile method (or inverse distribution transform method), we generate a
uniform random number U and feed it as the argument to Q,. Now Q,(U) has the
distribution function F,:

Pr(Q(U)<a) = Pr(F,(Qz(U)) < Fy(a)) (5.4)
= Pr(U <Fy(a)) (5.5)
= Fy(a) (5.6)

where the last line uses the fact that U is uniform on [0, 1], and the first line uses the
fact that F, is a non-decreasing function, so b < a is true if and only if F,(b) < F,(a).

Example. The CDF of the exponential distribution with rate A is 1 —e~**. The
quantile function Q(p) is thus —bg(lT_p). (Notice that this is positive, because 1—p <
1 and so log(1— p) < 0, and that it has units of 1/4, which are the units of x, as it

19:31 Saturday 9 February, 2013

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 102

should.) Therefore, if U Unif(0, 1), then —M ~ Exp(A). This is the method
used by rexp().
Example. The Pareto distribution or power law is a two-parameter family,

-
Flxsa,x,) = =22 if x > x,, with density 0 otherwise. Integration shows
0 5 \x 0

. 7(1‘{’1 .
that the cumulative distribution function is F(x;a,x,) = 1 — <xi) . The quantile
0

function therefore is Q(p; a, xy) = x5(1 — p)_ﬁ. (Notice that this has the same units
as x, as it should.)

Example. The standard Gaussian .4(0, 1) does not have a closed form for its quan-
tile function, but there are fast and accurate ways of calculating it numerically (they’re
what stand behind gnorm), so the quantile method can be used. In practice, there are
other transformation methods which are even faster, but rely on special tricks.

Since Q,(U) has the same distribution function as X, we can use the quantile
method, as long as we can calculate Q,. Since Q, always exists, in principle this
solves the problem. In practice, we need to calculate Q, before we can use it, and this
may not have a closed form, and numerical approximations may be in tractable.?

5.2.2.4 Rejection Method

Another general approach, which avoids needing the quantile function, is the rejec-
tion method. Suppose that we want to generate Z, with probability density function
/7> and we have a method to generate R, with p.d.f. p, called the proposal distribu-
tion. Also suppose that f,(x) < p(x)M, for some constant M > 1. For instance, if £,
has a limited range 4, b], we could take o to be the uniform distribution on [a, /],
and M the maximum density of £,.

The rejection method algorithm then goes as follows.

1. Generate a proposal R from p.
2. Generate a uniform U, independently of R.
3. Is MUp(R) < f,(R)?

o If yes, “accept the proposal” by returning R and stopping.
e If no, “reject the proposal”, discard R and U, and go back to (1)

If o is uniform, this just amounts to checking whether MU < f,(R), with M the
maximum density of Z.

Computationally, the idea looks like Example 3.

One way to understand the rejection method is as follows. Imagine drawing the
curve of f,(x). The total area under this curve is 1, because [dxf,(x) = 1. The

area between any two points 4 and b on the horizontal axis is fﬂb dxf,(x)=F,(b)—
F,(a). It follows that if we could uniformly sample points from the area between the
curve and the horizontal axis, their x coordinates would have exactly the distribution

3In essence, we have to solve the nonlinear equation F,(x) = p for x over and over — and that assumes
we can easily calculate F.

19:31 Saturday 9 February, 2013

103 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

rrejection.l <- function(dtarget,dproposal,rproposal,M) {
rejected <- TRUE
while(rejected) {
R <- rproposal(1)
U <- runif(1)
rejected <- (MxUxdproposal(R) < dtarget(R))
}
return(R)

}

rrejection <- function(n,dtarget,dproposal,rproposal,M) {
replicate(n,rrejection.1(dtarget,dproposal,rproposal,M))
}

Code Example 3: An example of how the rejection method would be used. The argu-
ments dtarget, dproposal and rproposal would all be functions. This is not quite
industrial-strength code, because it does not let us pass arguments to those functions
flexibly. See online code for comments.

function we are looking for. If p is a uniform distribution, then we are drawing a
rectangle which just encloses the curve of f,, sampling points uniformly from the
rectangle (with x coordinates R and y coordinates M U), and only keeping the ones
which fall under the curve. When p is not uniform, but we can sample from it
nonetheless, then we are uniformly sampling from the area under M p, and keeping
only the points which are also below £,.

Example. The beta distribution, f(x;a,b) = rr(ia)Jrrfb)) x*1(1—x)>71, is defined on
the unit interval®. While its quantile function can be calculated and so we could
use the quantile method, we could also use the reject method, taking the uniform
distribution for the proposals. Figure 5.1 illustrates how it would go for the Beta(5,10)
distribution

The rejection method’s main drawback is speed. The probability of accepting on
any given pass through the algorithm is 1/M. (EXERCISE: Why?) Thus produce n
random variables from it takes, on average, nM cycles. (EXERCISE: Why?) Clearly,
we want M to be as small, which means that we want the proposal distribution p to
be close to the target distribution f,. Of course if we’re using the rejection method
because it’s hard to draw from the target distribution, and the proposal distribution
is close to the target distribution, it may be hard to draw from the proposal.

*Here T'(a) = [;° dxe™*x*~!. It is not obvious, but for integer 4, I'(a) = (¢ — 1)!. The distribution gets

its name because % is called the beta function of 4 and 4, a kind of continuous generalization of

(“:b). The beta distribution arises in connection with problems about minima and maxima, and inference
for binomial distributions.

19:31 Saturday 9 February, 2013

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 104

dbeta(x, 5, 10)
1.5 2.0 25 3.0
|

1.0

0.5
|

M <- 3.3

curve (dbeta(x,5,10) ,from=0,to=1,ylim=c(0,M))

r <- runif(300,min=0,max=1)

u <- runif(300,min=0,max=1)

below <- which(M*u*dunif (r,min=0,max=1) <= dbeta(r,5,10))
points(r[below] ,M*u[below] ,pch="+")

points(r[-below] ,M*u[-below] ,pch="-")

Figure 5.1: Illustration of the rejection method for generating random numbera from
a Beta(5,10) distribution. The proposal distribution is uniform on the range of the
beta, which is [0,1]. Points are thus sampled uniformly from the rectangle which
runs over [0, 1] on the horizontal axis and [0,3.3] on the vertical axis, i.e., M = 3.3,
because the density of the Beta is < 3.3 everywhere. (This is not the lowest possible
M but it is close.) Proposed points which fall below the Beta’s pdf are marked + and
are accepted; those above the pdf curve are marked — and are rejected. In this case,
exactly 70% of proposals are rejected.

19:31 Saturday 9 February, 2013

105 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

5.2.2.5 The Metropolis Algorithm and Markov Chain Monte Carlo

One very important, but tricky, way of getting past the limitations of the rejection
method is what’s called the Metropolis algorithm. Once again, we have a density
f, from which we wish to sample. Once again, we introduce a distribution for “pro-
posals”, and accept or reject proposals depending on the density f,. The twist now is
that instead of making independent proposals each time, the next proposal depends
on the last accepted value — the proposal distribution is a conditional pdf o(7|z).

Assume for simplicity that p(r|z) = rho(z|r). (For instance, we could have a
Gaussian proposal distribution centered on z.) Then the Metropolis algorithm goes
as follows.

1. Start with value Z; (fixed or random).
2. Generate R from the conditional distribution p(+|Z,).
3. Generate a uniform U, independent of R.

U< FRfZ)
o Ifyes,set Z, ., =R and goto (2)

N

e Ifnot,set Z,,, =Z, and go to (2)

Mostly simply, the algorithm is run until ¢ = », at which point it returns Z,, Z,,... Z,,.
In practice, better results are obtained if it’s run for 7+, steps, and the first 7, values
of Z are discarded — this is called “burn-in”.

Notice that if ,(R) > f,(Z,), then R is always accepted. The algorithm always ac-
cepts proposals which move it towards places where the density is higher than where
it currently is. If f,(R) < f,(Z,), then the algorithm accepts the move with some
probability, which shrinks as the density at R gets lower. It should not be hard to
persuade yourself that the algorithm will spend more time in places where £, is high.

It’s possible to say a bit more. Successive values of Z, are dependent on each
other, but Z, ALZ, ||Z, — this is a Markov process. The target distribution £, is
in fact exactly the stationary distribution of the Markov process. If the proposal
distributions have broad enough support that the algorithm can get from any z to
any z’ in a finite number of steps, then the process will “mix”. (In fact we only need
to be able to visit points where f, > 0.) This means that if we start with an arbitrary
distribution for Z,, the distribution of Z, approaches £, and stays there — the point
of burn-in is to give this convergence time to happen. The fraction of time Z, is close
to x is in fact proportional to f,(x), so we can use the output of the algorithm as,
approximately, so many draws from that distribution.’

It would seem that the Metropolis algorithm should be superior to the rejection
method, since to produce 7 random values we need only 7 steps, or 7 + 7, to handle
burn-in, not nM steps. However, this is deceptive, because if the proposal distribu-
tion is not well-chosen, the algorithm ends up staying stuck in the same spot for,
perhaps, a very long time. Suppose, for instance, that the distribution is bimodal. If

5 And if the dependence between Z, and Z, ,; bothers us, we can always randomly permute them, once
we have them.

19:31 Saturday 9 February, 2013

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 106

Z, starts out in between the modes, it’s easy for it to move rapidly to one peak or
the other, and spend a lot of time there. But to go from one mode to the other, the
algorithm has to make a series of moves, all in the same direction, which all reduce
/7, which happens but is unlikely. It thus takes a very long time to explore the whole
distribution. The “best” optimal proposal distribution is make p(7|z) = f,(r), i.e., to
just sample from the target distribution. If we could do that, of course, we wouldn’t
need the Metropolis algorithm, but trying to make p close to f; is generally a good
idea.

The original Metropolis algorithm was invented in the 1950s to facilitate design-
ing the hydrogen bomb. It relies on the assumption that the proposal distribution
is symmetric, p(7|z) = p(z|r). It is sometimes convenient to allow an asymmetric

Ca . o7 PRIZ) o f(R) o
proposal distribution, in which case one accepts R if U FARE AR This is called

Metropolis-Hastings. Both are examples of the broader class of Markov Chain
Monte Carlo algorithms, where we give up on getting independent samples from
the target distribution, and instead make the target the invariant distribution of a
Markov process.

5.2.2.6 Generating Uniform Random Numbers

Everything previously to this rested on being able to generate uniform random num-
bers, so how do we do that? Well, really that’s a problem for computer scientists. . . But
it’s good to understand a little bit about the basic ideas.®

First of all, the numbers we get will be produced by some deterministic algo-
rithm, and so will be merely pseudorandom rather than truly random. But we
would like the deterministic algorithm to produce extremely convoluted results, so
that its output Jooks random in as many ways that we can test as possible. Depen-
dencies should be complicated, and correlations between easily-calculated functions
of successive pseudorandom numbers should be small and decay quickly. (In fact,
“truly random” can be defined, more or less, as the limit of the algorithm becoming
infinitely complicated.) Typically, pseudorandom number generators are constructed
to produce a sequence of uniform values, starting with an initial value, called the seed.
In normal operation, the seed is set from the computer’s clock; when debugging, the
seed can be held fixed, to ensure that results can be reproduced exactly.

Probably the simplest example is incommensurable rotations. Imagine a watch
which fails very slightly, but deterministically, to keep proper time, so that its second
hand advances ¢ # 1 seconds in every real second of time. The position of the watch
after ¢ seconds is

0, =0,+ ta mod 60 (5.7)

If ¢ is commensurable with 60, meaning /60 = k/m for some integers k,m, then
the positions would just repeat every 60k seconds. If & is incommensurable, because
it is an irrational number, then &, never repeats. In this case, not only does , never
repeat, but it is uniformly distributed between 0 and 60, in the sense that the fraction
of time it spends in any sub-interval is just proportional to the length of the interval.
(EXERCISE: Why?)

©This section is optional for Spring 2013.

19:31 Saturday 9 February, 2013

107 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

You could use this as a pseudo-random number generator, with &, as the seed,
but it would not be a very good one, for two reasons. First, exactly representing an
irrational number « on a digital computer is impossible, so at best you could use a
rational number such that the period 60k is large. Second, and more pointedly, the
successive 0, are really too close to each other, and too similar. Even if we only took,
say, every 50 value, they’d still be quite correlated with each other.

One way this has been improved is to use multiple incommensurable rotations.
Say we have a second inaccurate watch, ¢, = ¢, + St mod 60, where (3 is incom-
mensurable with both 60 and with . We record , when ¢, is within some small
window of 0.

Another approach is to use more aggressively complicated deterministic map-
pings. Take the system

0,01 = 0,+¢, mod1 (5.8)
¢t+1 = 6t+2¢tm0d1

This is known as “Arnold’s cat map”, after the great Soviet mathematician V. L.
Arnold, and Figure 5.2. We can think of this as the second-hand 8, advancing not
by a fixed amount a every second, but by a varying amount ¢,. The variable ¢,
meanwhile, advances by the amount ¢, + &,. The effect of this is that if we look at
only one of the two coordinates, say ,, we get a sequence of numbers which, while
deterministic, is uniformly distributed, and very hard to predict (Figure 5.3).

5.2.3 Sampling

A complement to drawing from given distributions is to sample from a given collec-
tion of objects. This is such a common task that R has a handy built-in function to
do it:

sample (x,size,replace=FALSE, prob=NULL)

Here x is a vector which defines the set of objects we’re going to sample from. size is
the number of samples we want to draw from x. replace says whether the samples
are drawn with or without replacement. (If replace=TRUE, then size can be arbi-
trarily larger than the length of x. If replace=FALSE, having a larger size doesn’t
make sense.) Finally, the optional argument prob allows for weighted sampling; ide-
ally, prob is a vector of probabilities as long as x, giving the probability of drawing
each element of x*.

As a convenience for a common situation, running sample with one argument
produces a random permutation of the input, i.e.,

sample (x)

is equivalent to

7The core idea here actually dates back to a medieval astronomer named Nicholas Oresme in the 1300s,
as part of an argument that the universe would not repeat exactly (von Plato, 1994, pp. 279-284).
81f the elements of prob do not add up to 1, but are positive, they will be normalized by their sum,
9 1

e.g., setting prob=c(9,9,1) will assign probabilities (12, 5> 19 to the three elements of x.

19:31 Saturday 9 February, 2013

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 108

Eﬂﬂ T .'- 1 T i 24ﬂ

275 209 300

Figure 5.2: Effect of the Arnold cat map. The original image is 300 x 300, and
mapped into the unit square. The cat map is then applied to the coordinates of
each pixel separately, giving a new pixel which inherits the old color. (This can
most easily seen in the transition from the original to time 1.) The original im-
age re-assembles itself at time 300 because all the original coordinates we multi-
ples of 1/300. If we had sampled every, say, 32 time-steps, it would have taken
much longer to see a repetition. In the meanwhile, following the x coordinate of
a single pixel from the original image would provide a very creditable sequence of
pseudo-random values. (Figure from Wikipedia, s.v. “Arnold’s cat map”. See also
http://math.gmu.edu/ sander/movies/arnold.html.)

19:31 Saturday 9 February, 2013

109 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

arnold.map <- function(v) {
theta <- v[1]
phi <- v[2]
theta.new <- (theta+phi)%#kl
phi.new <- (theta+2*phi)%%1
return(c(theta.new,phi.new))

rarnold <- function(n,seed) {
z <- vector(length=n)
for (i in 1:n) {
seed <- arnold.map(seed)
z[i] <- seed[1]
}
return(z)

}

Code Example 4: A function implementing the Arnold cat map (Eq. 5.9), and a
second function which uses it as a pseudo-random number generator. See online
version for comments.

Histogram of z

wo
9°%
)

gc

o
*
o
5
8
%
S
e
8
°
S
o
%
ap
&
© o0
o
%0
Q)O%
o oF
S

08
06
°
@ o g)oc
Ry
o o ®
o
S
=3
g
o
o
o
8

Density
06
Zia
%

-3
%,
o o

04
L
®
)
o
%

0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0

par (mfrow=c(2,1))

z <- rarnold(1000,c(0.11124,0.42111))

hist(z,probability=TRUE)

plot(z[-1000],z[-1],xlab=expression(Z[t]) ,ylab=expression(Z[t+1]))

Figure 5.3: Left: histogram from 1000 samples of the & coordinate of the Arnold cat
map, started from (0.11124,0.42111). Right: scatter-plot of successive values from
the sample, showing that the dependence is very subtle.

19:31 Saturday 9 February, 2013

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 110

sample (x,size=length(x) ,replace=FALSE)
For example, if we’re doing five-fold cross-validation, then
sample (rep(1:5,length.out=nrow(df))

will first repeat the numbers 1,2,3,4,5 until we have one number for each row of
df, and then shuffle the order of those numbers randomly. This then would give an
assignment of each row of df to one (and only one) of five folds.

5.2.3.1 Sampling Rows from Data Frames

When we have multivariate data (which is the usual situation), we typically arrange
it into a data-frame, where each row records one unit of observation, with multiple
interdependent columns. The natural notion of sampling is then to draw a random
sample of the data points, which in that representation amounts to a random sample
of the rows. We can implement this simply by sampling row numbers. For instance,
this command,

df [sample(1:nrow(df),size=b),]

will create a new data frame from b, by selecting b rows from df without replacement.
It is an easy exercise to figure out how to sample from a data frame with replacement,
and with unequal probabilities per row.

5.2.3.2 Multinomials and Multinoullis

If we want to draw one value from a multinomial distribution with probabilities
P = (P15 Pas--- pp), then we can use sample:

sample(1:k,size=1,prob=p)

If we want to simulate a “multinoulli” process’, i.e., a sequence of independent and
identically distributed multinomial random variables, then we can easily do so:

rmultinoulli <- function(n,prob) {
k <- length(prob)
return(sample(1:k,size=n,replace=TRUE, prob=prob))
}

5.2.3.3 Probabilities of Observation

Often, our models of how the data are generated will break up into two parts. One
part is a model of how actual variables are related to each other out in the world.
(E.g., we might model how education and racial categories are related to occupation,
and occupation is related to income.) The other part is a model of how variables come
to be recorded in our data, and the distortions they might undergo in the course of
doing so. (E.g., we might model the probability that someone appears in a survey

9 A handy term I learned from Gustavo Lacerda.

19:31 Saturday 9 February, 2013

111 5.3. WHY SIMULATE?

as a function of race and income.) Plausible sampling mechanisms often make the
probability of appearing in the data a function of some of the variables. This can
then have important consequences for our inferences from the data we happen to see
to the whole population or process.

income <- rnorm(n,mean=predict(income.model,x),sd=sigma)
capture.probabilities <- predict(observation.model,x)
observed.income <- sample(income,size=b,prob=capture.probabilities)

5.2.4 Repeating Simulations

Because simulations are often most useful when they are repeated many times, R has
a command to repeat a whole block of code:

replicate(n,expr)

Here expr is some executable “expression” in R, basically something you could type
in the terminal without trouble, and n is the number of times to repeat it.
For instance,

output <- replicate(1000,rnorm(length(x),betaO+betal*x,sigma))

will replicate, 1000 times, sampling from the predictive distribution of a Gaussian
linear regression model. Conceptually, this is equivalent to doing something like

output <- matrix(0,nrow=1000,ncol=length(x))
for (i in 1:1000) {

output[i,] <- rnorm(length(x),betal+betal*x,sigma)
}

but the replicate version has two great advantages. First, it is faster, because R
processes it with specially-optimized code. (Loops are especially slow in R.) Second,
and far more importantly, it is clearer: it makes it obvious what is being done, in one
line, and leaves the computer to figure out the boring and mundane details of how
best to implement it.

5.3 Why Simulate?

There are three major uses for simulation: to understand a model, to check it, and to
fit it.

5.3.1 Understanding the Model; Monte Carlo

We understand a model by seeing what it predicts about the variables we care about,
and the relationships between them. Sometimes those predictions are easy to ex-
tract from a mathematical representation of the model, but often they aren’t. With a
model we can simulate, however, we can just run the model and see what happens.

19:31 Saturday 9 February, 2013

5.3. WHY SIMULATE? 112

Our stochastic model gives a distribution for some random variable Z, which in
general is a complicated, multivariate object with lots of interdependent components.
We may also be interested in some complicated function g of Z, such as, say, the
ratio of two components of Z, or even some nonparametric curve fit through the
data points. How do we know what the model says about g?

Assuming we can make draws from the distribution of Z, we can find the distri-
bution of any function of it we like, to as much precision as we want. Suppose that
Zy,Zy,...Z, are the outputs of b independent runs of the model — & different repli-
cates of the model. (I am using the tilde to remind us that these are just simulations.)
We can calculate g on each of them, getting g(Zl), g(zz), . g(zb). If averaging makes
sense for these values, then

14, . -
ZZg(Z»b—»ooE[g(Z)] (5.9)

i=1

by the law of large numbers. So simulation and averaging lets us get expectation
values. This basic observation is the seed of the Monte Carlo method.'® If our sim-
ulations are independent, we can even say that %Zf’zl g(Z;) has approximately the
distribution A (E[g(Z)],Var[g(Z)]//) by the central limit theorem. Of course, if
you can get expectation values, you can also get variances. (This is handy if trying to
apply the central limit theorem!) You can also get any higher moments — if you need
the kurtosis for whatever reason, you just have to simulate enough.
You can also pick any set s and get the probability that g(Z) falls into that set:

1 -

Z;g(g(zi))b_mopr(g(Z)es) (5.10)
The reason this works is of course that Pr(g(Z)€s) = E[1,(g(Z))], so it’s just
the central limit theorem. So we can get the whole distribution of any complicated
function of the model that we want, as soon as we can simulate the model. It is really
only a little harder to get the complete sampling distribution than it is to get the
expectation value, and the exact same ideas apply.

5.3.2 Checking the Model

An important but under-appreciated use for simulation is to check models after they
have been fit. If the model is right, after all, it represents the mechanism which gen-
erates the data. This means that when we simulate, we run that mechanism, and the
surrogate data which comes out of the machine should look like the real data. More
exactly, the real data should look like a typical realization of the model. If it does not,
then the model’s account of the data-generating mechanism is systematically wrong

19The name comes from the physicists who used the method to do calculations relating to designing the
hydrogen bomb; see Metropolis et al. (1953). Folklore among physicists says that the method goes back at
least to Enrico Fermi in the 1930s, without the cutesy name.

19:31 Saturday 9 February, 2013

113 5.3. WHY SIMULATE?

rgeyser <- function() {
n <- nrow(geyser)
sigma <- summary(fit.ols)$sigma
new.waiting <- rnorm(n,mean=fitted(fit.ols),sd=sigma)
new.geyser <- data.frame(duration=geyser$duration,
waiting=new.waiting)
return(new.geyser)

}

Code Example 5: Function for generating surrogate data sets from the linear model
fit to geyser.

in some way. By carefully choosing the simulations we perform, we can learn a lot
about how the model breaks down and how it might need to be improved.!!

Often the comparison between simulations and data can be done qualitatively
and visually. For example, a classic data set concerns the time between eruptions of
the Old Faithful geyser in Yellowstone, and how they relate to the duration of the
latest eruption. A common exercise is to fit a regression line to the data by ordinary
least squares:

library (MASS)
data(geyser)
fit.ols <- lm(waiting~duration,data=geyser)

Figure 5.4 shows the data, together with the OLS regression line. It doesn’t look
that great, but if someone insisted it was a triumph of quantitative vulcanology, how
could you show they were wrong?

Well, OLS is usually presented as part of a probability model for the response
conditional on the input, with Gaussian and homoskedastic noise. In this case, the
probability model is waiting = [, + ,duration + ¢, with € ~ A(0,0?%). If we
simulate from this probability model, we’ll get something we can compare to the
actual data, to help us assess whether the scatter around that regression line is really
bothersome. Since OLS doesn’t require us to assume a distribution for the input
variable (here, duration), the simulation function in Code Example 5 leaves those
values alone, but regenerates values of the response (waiting) according the model
assumptions.

A useful principle for model checking is that if we do some exploratory data
analyses of the real data, doing the same analyses to realizations of the model should
give roughly the same results. This isn’t really the case here. Figure 5.5 shows the
actual density of waiting, plus the density produced by simulating — reality is clearly
bimodal, but the model is unimodal. Similarly, Figure 5.6 shows the real data, the
OLS line, and a simulation from the OLS model. It’s visually clear that the deviations
of the real data from the regression line are both bigger and more patterned than those
we get from simulating the model, so something is wrong with the latter.

“Might”, because sometimes we’re better off with a model that makes systematic mistakes, if they’re
small and getting it right would be a hassle.

19:31 Saturday 9 February, 2013

5.3. WHY SIMULATE? 114

100
|

waiting

I I I
1 2 3

duration

plot(geyser$duration,geyser$waiting,xlab="duration",ylab="waiting")

abline(fit.ols)

Figure 5.4: Data for the geyser data set, plus the OLS regression line.

19:31 Saturday 9 February, 2013

115 5.3. WHY SIMULATE?

Density
0015 0020 0025 0030
L L L

0.010
I

0.005
I

0.000
|

waiting

plot(density(geyser$waiting) ,xlab="waiting",main="",sub="")
lines(density(rgeyser()$waiting) ,lty=2)

Figure 5.5: Actual density of the waiting time between eruptions (solid curve) an that
produced by simulating the OLS model (dashed).

By itself, just seeing that data doesn’t look like a realization of the model isn’t
super informative, since we’d really like to know how the model’s broken, and how
to fix it. Further simulations, comparing analyses of the data to analyses of the sim-
ulation output, are often very helpful here. Looking at Figure 5.6, we might suspect
that one problem is heteroskedasticity — the variance isn’t constant. This suspicion
is entirely correct, and will be explored in §7.3.2.

5.3.3 Sensitivity Analysis

Often, the statistical inference we do on the data is predicated on certain assump-
tions about how the data is generated. For instance, if we have missing values for
some variables and just ignore incomplete rows, we are implicitly assuming that data
are “missing at random”, rather than in some systematic way. If we are not totally
confident in such assumptions, we might wish to see what happens they break down.
That is, we set up a model where the assumptions are more or less violated, and then
run our original analysis on the simulation output. Because it’s a simulation, we
know the complete truth about the data-generating process, and can assess how far
off our inferences are. In favorable circumstances, our inferences don’t mess up too
much even when the assumptions we used to motivate the analysis are badly wrong,
Sometimes, however, we discover that even tiny violations of our initial assumptions
lead to large errors in our inferences. Then we either need to make some compelling
case for those assumptions, or be very cautious in our inferences.

19:31 Saturday 9 February, 2013

5.3. WHY SIMULATE? 116

100
|

waiting

duration

plot(geyser$duration,geyser$waiting,xlab="duration",ylab="waiting")

abline(fit.ols)
points(rgeyser () ,pch=20,cex=0.5)

Figure 5.6: As in Figure 5.4, plus one realization of simulating the OLS model (small
black dots).

19:31 Saturday 9 February, 2013

117 5.4. THE METHOD OF SIMULATED MOMENTS

5.4 The Method of Simulated Moments

Checking whether the model’s simulation output looks like the data naturally sug-
gests the idea of adjusting the model until it does. This becomes a way of estimat-
ing the model — in the jargon, simulation-based inference. All forms of this in-
volve adjusting parameters of the model until the simulations do look like the data.
They differ in what “look like” means, concretely. The most straightforward form
of simulation-based inference is the method of simulated moments.'

5.4.1 The Method of Moments

You will have seen the ordinary method of moments in earlier statistics classes.
Let’s recall the general setting. We have a model with a parameter vector ¢, and
pick a vector m of moments to calculate. The moments, like the expectation of any
variables, are functions of the parameters,

m=g(0) (5.11)

for some function g. If that g is invertible, then we can recover the parameters from
the moments,

0=g"Y(m) (5.12)

The method of moments estimator takes the observed, sample moments 772, and plugs
them into Eq. 5.12:

—

Oun =8 (/) (5.13)
What if ¢! is hard to calculate — if it’s hard to explicitly solve for parameters from
moments? In that case, we can use minimization:

—

0, = argmin||g(6) — ||* (5.14)
%

For the minimization version, we just have to calculate moments from parameters
g(0), not vice versa. To see that Egs. 5.13 and 5.14 do the same thing, notice that
(i) the squared® distance ||g(&) — 72||* > 0, (ii) the distance is only zero when the
moments are matched exactly, and (iii) there is only & which will match the moments.

In either version, the method of moments works statistically because the sample
moments 772 converge on their expectations g() as we get more and more data. This
is, to repeat, a consequence of the law of large numbers.

It’s worth noting that nothing in this argument says that 7 has to be a vector of
moments in the strict sense. They could be expectations of any functions of the ran-
dom variables, so long as g(&) is invertible, we can calculate the sample expectations
of these functions from the data, and the sample expectations converge. When m
isn’t just a vector of moments, then, we have the generalized method of moments.

127This section is optional for spring 2013.
13Why squared? Basically because it makes the function we’re minimizing smoother, and the optimiza-
tion nicer.

19:31 Saturday 9 February, 2013

5.4. THE METHOD OF SIMULATED MOMENTS 118

It is also worth noting that there’s a somewhat more general version of the same
method, where we minimize

(8(0) =) w(g(0)—rm) (5.15)

with some positive-definite weight matrix w. This can help if some of the moments
are much more sensitive to the parameters than others. But this goes beyond what
we really need here.

5.4.2 Adding in the Simulation

All of this supposes that we know how to calculate g(6) — that we can find the
moments exactly. Even if this is too hard, however, we could always simulate to
approximate these expectations, and try to match the simulated moments to the real
ones. Rather than Eq. 5.14, the estimator would be

—

2
Ogrn = arg;nin g.1(6) - m” (5.16)

with s being the number of simulation paths and 7" being their size. Now consistency
requires that § — g, either as T grows or s or both, but this is generally assured by
the law of large numbers, as we talked about earlier. Simulated method of moments
estimates like this are generally more uncertain than ones which don’t rely on simu-
lation, since it introduces an extra layer of approximation, but this can be reduced by
increasing s.!*

5.4.3 An Example: Moving Average Models and the Stock Mar-
ket

To give a concrete example, we will try fitting a time series model to the stock market:
it’s a familiar subject which interests most students, and we can check the method of
simulated moments here against other estimation techniques.'

Our data will consist of about ten year’s worth of daily values for the S& P 500
stock index, available on the class website:

sp <- read.csv("SPhistory.short.csv")

We only want closing prices

sp <- spl[,7]

The data are in reverse chronological order, which is weird for us
sp <- rev(sp)

And in fact we only want log returns, i.e., difference in logged prices

sp <- diff(log(sp))

%A common trick is to fix T at the actual sample size 7, and then to increase s as much as computa-
tionally feasible. By looking at the variance of § across different runs of the model with the same 8, one
gets an idea of how much uncertainty there is in 772 itself, and so of how precisely one should expect to be
able to match it. If the optimizer has gotten |g(6) — 72| down to 0.02, and the standard deviation of g at
constant @ is 0.1, further effort at optimization is probably wasted.

>Nothing in what follows, or in the homework, could actually be used to make money, however.

19:31 Saturday 9 February, 2013

119 5.4. THE METHOD OF SIMULATED MOMENTS

Professionals in finance do not care so much about the sequence of prices P,, as the

Pt

%. This is because making $1000 is a lot better when you

t—1
invested $1000 than when you invested $1,000,000, but 10% is 10%. In fact, it’s often
easier to deal with the log returns, X, =log PP—‘, as we do here.
t—1

sequence of returns,

The model we will fit is a first-order moving average, or MA(1), model:

X, = Z,+0z,_, (5.17)
Z, ~ N(0,0%)iid. (5.18)

The X, sequence of variables are the returns we see; the Z, variables are invisible to
us. The interpretation of the model is as follows. Prices in the stock market change
in response to news that affects the prospects of the companies listed, as well as news
about changes in over-all economic conditions. Z, represents this flow of news, good
and bad. It makes sense that Z, is uncorrelated, because the relevant part of the
news is only what everyone hadn’t already worked out from older information!®.
However, it does take some time for the news to be assimilated, and this is why
Z,_, contributes to X,. A negative contribution, ¢ < 0, would seem to indicate a

“correction” to the reaction to the previous day’s news.

Mathematically, notice that since Z, and 6Z, _; are independent Gaussians, X, is
a Gaussian with mean 0 and variance 02 4+ 6?0%. The marginal distribution of X, is
therefore the same for all ¢. For technical reasons!'”, we can really only get sensible
behavior from the model when —1 <6 <1.

There are two parameters, § and o2, so we need two moments for estimation.
Let’s try Var [X,] and Cov [X,,X,_,].

Var [Xz] = Var [Zr] + 6*Var [Z:—l] (5.19)
= 024 6%? (5.20)
= *(1+6H)=v(0,0) (5.21)

(This agrees with our earlier reasoning about Gaussians, but doesn’t need it.)

Cov|[X,,X,_,] = E[(Z,+0Z,_)Z,_,+0Z,_,)] (5.22)
= 06E [zf_l] (5.23)
= Go*=c(b,0) (5.24)

We can solve the system of equations for the parameters, starting with eliminating

16Nobody will ever say “What? It’s snowing in Pittsburgh in February? I must call my broker!”

7Think about trying to recover Z,, if we knew 6. One might try X, — 0X,_,, which is almost right,
wsZ,+0Z,_—0Z,_—0%Z,_ y=Z7,—0%Z, ,.Similarly, X, —0X,_|+6?>X, ,=Z,+0°Z,_,,and so
forth. If |f] < 1, then this sequence of approximations will converge on Z,; if not, then not. It turns out
that models which are not “invertible” in this way are very strange — see Shumway and Stoffer (2000).

19:31 Saturday 9 February, 2013

5.4. THE METHOD OF SIMULATED MOMENTS 120

o
o) _ o0 (5.25)

7)((9,(7) 02(1 +(92)
_ (5.26)

1+067
0 = #i_p4+% (5.27)
v v
This is a quadratic in 6,
P 528)
2c/v

and it’s easy to confirm'® that this has only one solution in the meaningful range,
—1< 6 < 1. Having found 8, we solve for o2,

o?=c/l (5.29)

The method of moments estimator takes the sample values of these moments, 9
and ¢, and plugs them in to Egs. 5.28 and 5.29. With the S& P returns, the sample

covariance is —1.61 x 10~°, and the sample variance 1.96 x 10~*. This leads to 8,,,, =

—8.28 x 1072, and azMM =1.95x 107*. In terms of the model, then, each day’s news
has a follow-on impact on prices which is about 8% as large as its impact the first day,
but with the opposite sign.?

If we did not know how to solve a quadratic equation, we could use the minimiza-
tion version of the method of moments estimator:

Ovm . o’0—¢ 2
—= | =argmin R 5.30
2 | TR e -0 o

Computationally, it would go something like Code Example 6.

The parameters estimated by minimization agree with those from direct algebra
to four significant figures, which I hope is good enough to reassure you that this
works.

Before we can try out the method of simulated moments, we have to figure out
how to simulate our model. X, is a deterministic function of Z, and Z,_,, so our
general strategy says to first generate the Z,, and then compute X, from that. But
here the Z, are just a sequence of independent Gaussians, which is a solved problem
for us. The one wrinkle is that to get our first value X, we need a previous value Z,.
Code Example 7 shows the solution.

BFor example, plot ¢/v as a function of &, and observe that any horizontal line cuts the graph at only
one point.

—

Tt would be natural to wonder whether 8,,,, is really significantly different from zero. Assuming
Gaussian noise, one could, in principle, calculate the probability that even though & = 0, by chance ¢/
was so far from zero as to give us our estimate. As you will see in the homework, however, Gaussian
assumptions are very bad for this data. This sort of thing is why we have bootstrapping.

19:31 Saturday 9 February, 2013

121 5.4. THE METHOD OF SIMULATED MOMENTS

ma.mm.est <- function(c,v) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par=c(theta.0,sigma2.0), fn=ma.mm.objective,
c=c, V=V)
return(fit)

}

ma.mm.objective <- function(params,c,v) {
theta <- params[1]
sigma2 <- params[2]
c.pred <- theta*sigma?2
v.pred <- sigma2*(1l+theta~2)
return((c-c.pred)~2 + (v-v.pred)~2)

}

Code Example 6: Code for implementing method of moments estimation of a first-
order moving average model, as in Eq. 5.30. See Appendix 5.6 for “design notes”, and
the online code for comments.

rma <- function(n,theta,sigma2,s=1) {
z <- replicate(s,rnorm(n=n+1,mean=0,sd=sqrt(sigma2)))
x <- z[-1,] + theta*z[-(n+1),]
return(x)

}

Code Example 7: Function which simulates s independent runs of a first-order mov-
ing average model, each of length n, with given noise variance sigma2 and after-effect
theta. See online for the version with comments on the code details.

19:31 Saturday 9 February, 2013

5.4. THE METHOD OF SIMULATED MOMENTS 122

sim.var <- function(n,theta,sigma2,s=1) {
vars <- apply(rma(n,theta,sigma2,s),2,var)
return(mean(vars))

sim.cov <- function(n,theta,sigma2,s=1) {
x <- rma(n,theta,sigma2,s)
covs <- colMeans(x[-1,]*x[-n,])
return(mean(covs))

}

Code Example 8: Functions for calculating the variance and covariance for specified
parameter values from simulations.

What we need to extract from the simulation are the variance and the covariance.
It will be more convenient to have functions which calculate these call rma() them-
selves (Code Example 8).

Figure 5.7 plots the covariance, the variance, and their ratio as functions of & with
o? = 1, showing both the values obtained from simulation and the theoretical ones.?
The agreement is quite good, though of course not quite perfect.?!

Conceptually, we could estimate & by jut taking the observed value ¢/9, running
a horizontal line across Figure 5.7c, and seeing at what @ it hit one of the simulation
dots. Of course, there might not be one it hits exactly...

The more practical approach is Code Example 9. The code is practically identical
to that in Code Example 6, except that the variance and covariance predicted by given
parameter settings now come from simulating those settings, not an exact calculation.
Also, we have to say how long a simulation to run, and how many simulations to
average over per parameter value.

When I run this, with s=100, I get éMSM =-8.36x10"%and 7, =1.94x107%,
which is quite close to the non-simulated method of moments estimate. In fact, in

this case there is actually a maximum likelihood estimator (arima(), after the more

general class of models including MA models), which claims 8,,, = —9.75 x 1072
and (?f“ = 1.94 x 10~*. Since the standard error of the MLE on & is £0.02, this
is working essentially as well as the method of moments, or even the method of
simulated moments.

In this case, because there is a very tractable maximum likelihood estimator, one
generally wouldn’t use the method of simulated moments. But we can in this case
check whether it works (it does), and so we can use the same technique for other
models, where an MLE is unavailable.

27 could also have varied 0% and made 3D plots, but that would have been more work. Also, the
variance and covariance are both proportional to o2, so the shapes of the figures would all be the same.

2Tf you look at those figures and think “Why not do a nonparametric regression of the simulated
moments against the parameters and use the fitted values as g, it’ll get rid of some of the simulation
noise?”, congratulations, you’ve just discovered the smoothed method of simulated moments.

19:31 Saturday 9 February, 2013

123 5.4. THE METHOD OF SIMULATED MOMENTS

e ° ° o
- - o
o 2 @
% £
o | & &
B - \\% o
@«
® '
8 e 21 % g
5 o] 5 b &
g S 3
8 s > S
* 3 £
ix%% -+
L,
o | %
B o | i‘{}{@ jﬁy
o
AN ral
o | e ww‘ﬁ

Ratio of covariance to variance

theta.grid <- seq(from=-1,to=1,length.out=300)

cov.grid <- sapply(theta.grid,sim.cov,sigma2=1,n=length(sp),s=10)

plot(theta.grid,cov.grid,xlab=expression(theta),ylab="Covariance")

abline(0,1,col="grey",1lwd=3)

var.grid <- sapply(theta.grid,sim.var,sigma2=1,n=length(sp),s=10)

plot(theta.grid,var.grid,xlab=expression(theta),ylab="Variance")

curve ((1+x~2) ,col="grey",1wd=3,add=TRUE)

plot(theta.grid,cov.grid/var.grid,xlab=expression(theta),
ylab="Ratio of covariance to variance")

curve(x/(1+x~2) ,col="grey",1wd=3,add=TRUE)

Figure 5.7: Plots of the covariance, the variance, and their ratio as a function of ,
with 02 = 1. Dots show simulation values (averaging 10 realizations each as long as
the data), the grey curves the exact calculations.

19:31 Saturday 9 February, 2013

5.4. THE METHOD OF SIMULATED MOMENTS

124

ma.msm.est <- function(c,v,n,s) {

}

theta.0 <- c/v
sigma2.0 <- v

fit <- optim(par=c(theta.0,sigma2.0),fn=ma.msm.objective,c=c,v=v,n

return(fit)

ma.msm.objective <- function(params,c,v,n,s) {

}

theta <- params[1]
sigma2 <- params[2
c.pred <- sim.cov(
v.pred <- sim.var(
return((c-c.pred)”

]

n,theta,sigma2,s)
n,theta,sigma2,s)
2 + (v-v.pred)~2)

=n,s=s)

Code Example 9: Code for implementing the method of simulated moments esti-
mation of a first-order moving average model.

19:31 Saturday 9 February, 2013

125 5.5. EXERCISES

5.5 Exercises

To think through, not to hand in.

Section 5.4 explained the method of simulated moments, where we try to match
expectations of various functions of the data. Expectations of functions are summary
statistics, but they’re not the only kind of summary statistics. We could try to esti-
mate our model by matching any set of summary statistics, so long as (i) there’s a
unique way of mapping back from summaries to parameters, and (i1) estimates of the
summary statistics converge as we get more data.

A powerful but somewhat paradoxical version of this is what’s called indirect
inference, where the summary statistics are the parameters of a different model. This
second or auxiliary model does nor have to be correctly specified, it just has to be
easily fit to the data, and satisfy (i) and (i1) above. Say the parameters of the auxiliary
model are 3, as opposed to the & of our real model. We calculate 3 on the real
data. Then we simulate from different values of 0, fit the auxiliary to the simulation
outputs, and try to match the auxiliary estimates. Specifically, the indirect inference
estimator is

b1 =arggain||/3‘<9>—ﬁ||2 (5.31)

where 3(0) is the value of 3 we estimate from a simulation of &, of the same size as
the original data. (We might average together a couple of simulation runs for each 6.)
If we have a consistent estimator of 3, then

B — B (5.32)
B6) — bO) (5.33)

If in addition b(6) is invertible, then

~

0 —0 (5.34)

For this to work, the auxiliary model needs to have at least as many parameters
as the real model, but we can often arrange this by, say, making the auxiliary model a
linear regression with a lot of coefficients.

A specific case, often useful for time series, is to make the auxiliary model an
autoregressive model, where each observation is linearly regressed on the previous
ones. A first-order autoregressive model (or “AR(1)”) is

X, =Bo+ B X,_i+e, (5.35)
where ¢, ~ . A(0, B5). (So an AR(1) has three parameters.)

1. Convince yourself that if X, comes from an MA(1) process, it can’t also be
written as an AR(1) model.

2. Write a function, arl.fit, to fit an AR(1) model to a time series, using 1m, and
to return the three parameters (intercept, slope, noise variance).

19:31 Saturday 9 February, 2013

5.5. EXERCISES 126

3. Apply ar1.fit to the S&P 500 data; what are the auxiliary parameter esti-
mates?

4. Combine ar1.fit with the simulator rma, and plot the three auxiliary param-
eters as functions of &, holding o fixed at 1. (This is analogous to Figure 5.7.)

5. Write functions, analogous to ma.msm.est and ma.msm.objective, for esti-
mating an MA(1) model, using an AR(1) model as the auxiliary function. Does

this recover the right parameter values when given data simulated from an
MA(1) model?

6. What values does your estimator give for 6 and 02 on the S& P 500 data?> How
do they compare to the other estimates?

19:31 Saturday 9 February, 2013

5.6. APPENDIX: SOME DESIGN NOTES ON THE METHOD OF
127 MOMENTS CODE

5.6 Appendix: Some Design Notes on the Method of
Moments Code

Go back to Section 5.4.3 and look at the code for the method of moments. There’ve
been a fair amount of questions about writing code, and this is a useful example.

The first function, ma.mm. est, estimates the parameters taking as inputs two
numbers, representing the covariance and the variance. The real work is done by
the built-in optim function, which itself takes two major arguments. One, £n, is the
function to optimize. Another, par, is an initial guess about the parameters at which
to begin the search for the optimum.?

The fn argument to optim must be a function, here ma.mm.objective. The
first argument to that function has to be a vector, containing all the parameters to
be optimized over. (Otherwise, optim will quit and complain.) There can be other
arguments, not being optimized over, to that function, which optim will pass along,
as you see here. optim will also accept a lot of optional arguments to control the
search for the optimum — see help(optim).

All ma.mm.objective has to do is calculate the objective function. The first two
lines peel out & and o? from the parameter vector, just to make it more readable.
The next two lines calculate what the moments should be. The last line calculates the
distance between the model predicted moments and the actual ones, and returns it.
The whole thing could be turned into a one-line, like

return(t(params-c(c,v)) %*% (params-c(c,v)))

or perhaps even more obscure, but that is usually a bad idea.

Notice that I could write these two functions independently of one another, at
least to some degree. When writing ma.mm.est, I knew I would need the objec-
tive function, but all I needed to know about it was its name, and the promise
that it would take a parameter vector and give back a real number. When writing
ma.mm.objective, all I had to remember about the other function was the promise
this one needed to fulfill. In my experience, it is usually easiest to do any substantial
coding in this “top-down” fashion?. Start with the high-level goal you are trying to
achieve, break it down into a few steps, write something which will put those steps
together, presuming other functions or programs can do them. Now go and write
the functions to do each of those steps.

The code for the method of simulated moments is entirely parallel to these. Writ-
ing it as two separate pairs of functions is therefore somewhat wasteful. If I find a
mistake in one pair, or thing of a way to improve it, I need to remember to make cor-
responding changes in the other pair (and not introduce a new mistake). In the long
run, when you find yourself writing parallel pieces of code over and over, it is better
to try to pull together the common parts and write them once. Here, that would
mean something like one pair of functions, with the inner one having an argument

22Here par is a very rough guess based on ¢ and v — it’ll actually be right when ¢=0, but otherwise it’s
not much good. Fortunately, it doesn’t have to be! Anyway, let’s return to designing the code
BWhat qualifies as “substantial coding” depends on how much experience you have

19:31 Saturday 9 February, 2013

5.6. APPENDIX: SOME DESIGN NOTES ON THE METHOD OF
MOMENTS CODE 128

which controlled whether to calculate the predicted moments by simulation or by a
formula. You may try your hand at writing this.

19:31 Saturday 9 February, 2013

