
19:31 Saturday 9th February, 2013

Chapter 7

Moving Beyond Conditional
Expectations: Weighted Least
Squares, Heteroskedasticity,
Local Polynomial Regression

So far, all our estimates have been based on the mean squared error, giving equal im-
portance to all observations. This is appropriate for looking at conditional expecta-
tions. In this chapter, we’ll start to work with giving more or less weight to different
observations. On the one hand, this will let us deal with other aspects of the distri-
bution beyond the conditional expectation, especially the conditional variance. First
we look at weighted least squares, and the effects that ignoring heteroskedasticity can
have. This leads naturally to trying to estimate variance functions, on the one hand,
and generalizing kernel regression to local polynomial regression, on the other.

7.1 Weighted Least Squares
When we use ordinary least squares to estimate linear regression, we (naturally) min-
imize the mean squared error:

M SE(�) =
1
n

nX
i=1
(yi �~xi ·�)2 (7.1)

The solution is of course b�OLS = (x
T x)�1xT y (7.2)

We could instead minimize the weighted mean squared error,

W M SE(�, ~w) =
1
n

nX
i=1

wi (yi �~xi ·�)2 (7.3)

154

155 7.2. HETEROSKEDASTICITY

This includes ordinary least squares as the special case where all the weights wi = 1.
We can solve it by the same kind of linear algebra we used to solve the ordinary linear
least squares problem. If we write w for the matrix with the wi on the diagonal and
zeroes everywhere else, the solution is

b�W LS = (x
T wx)�1xT wy (7.4)

But why would we want to minimize Eq. 7.3?

1. Focusing accuracy. We may care very strongly about predicting the response
for certain values of the input — ones we expect to see often again, ones where
mistakes are especially costly or embarrassing or painful, etc. — than others.
If we give the points ~xi near that region big weights wi , and points elsewhere
smaller weights, the regression will be pulled towards matching the data in that
region.

2. Discounting imprecision. Ordinary least squares is the maximum likelihood
estimate when the ✏ in Y = ~X ·�+ ✏ is IID Gaussian white noise. This means
that the variance of ✏ has to be constant, and we measure the regression curve
with the same precision elsewhere. This situation, of constant noise variance,
is called homoskedasticity. Often however the magnitude of the noise is not
constant, and the data are heteroskedastic.
When we have heteroskedasticity, even if each noise term is still Gaussian, or-
dinary least squares is no longer the maximum likelihood estimate, and so no
longer efficient. If however we know the noise variance �2

i at each measure-
ment i , and set wi = 1/�2

i , we get the heteroskedastic MLE, and recover effi-
ciency. (See below.)
To say the same thing slightly differently, there’s just no way that we can es-
timate the regression function as accurately where the noise is large as we can
where the noise is small. Trying to give equal attention to all parts of the input
space is a waste of time; we should be more concerned about fitting well where
the noise is small, and expect to fit poorly where the noise is big.

3. Doing something else. There are a number of other optimization problems
which can be transformed into, or approximated by, weighted least squares.
The most important of these arises from generalized linear models, where the
mean response is some nonlinear function of a linear predictor; we will look at
them in Chapters 12 and 13.

In the first case, we decide on the weights to reflect our priorities. In the third
case, the weights come from the optimization problem we’d really rather be solving.
What about the second case, of heteroskedasticity?

7.2 Heteroskedasticity
Suppose the noise variance is itself variable. For example, the figure shows a simple
linear relationship between the input X and the response Y , but also a nonlinear

19:31 Saturday 9th February, 2013

7.2. HETEROSKEDASTICITY 156

-4 -2 0 2 4

-1
5

-1
0

-5
0

5
1
0

1
5

x

y

Figure 7.1: Black line: Linear response function (y = 3� 2x). Grey curve: standard
deviation as a function of x (�(x) = 1+ x2/2).

relationship between X and Var[Y].
In this particular case, the ordinary least squares estimate of the regression line

is 2.56 � 1.65x, with R reporting standard errors in the coefficients of ±0.52 and
0.20, respectively. Those are however calculated under the assumption that the noise
is homoskedastic, which it isn’t. And in fact we can see, pretty much, that there is
heteroskedasticity — if looking at the scatter-plot didn’t convince us, we could always
plot the residuals against x, which we should do anyway.

To see whether that makes a difference, let’s re-do this many times with different
draws from the same model (Example 22).

Running ols.heterosked.error.stats(100) produces 104 random samples
which all have the same x values as the first one, but different values of y, gener-
ated however from the same model. It then uses those samples to get the standard
error of the ordinary least squares estimates. (Bias remains a non-issue.) What we
find is the standard error of the intercept is only a little inflated (simulation value of
0.64 versus official value of 0.52), but the standard error of the slope is much larger
than what R reports, 0.46 versus 0.20. Since the intercept is fixed by the need to make
the regression line go through the center of the data, the real issue here is that our
estimate of the slope is much less precise than ordinary least squares makes it out
to be. Our estimate is still consistent, but not as good as it was when things were
homoskedastic. Can we get back some of that efficiency?

7.2.1 Weighted Least Squares as a Solution to Heteroskedasticity
Suppose we visit the Oracle of Regression (Figure 7.4), who tells us that the noise
has a standard deviation that goes as 1+ x2/2. We can then use this to improve our
regression, by solving the weighted least squares problem rather than ordinary least

19:31 Saturday 9th February, 2013

157 7.2. HETEROSKEDASTICITY

-5 0 5

-2
0

0
20

40
60

80
10
0

x

y

x = rnorm(100,0,3)

y = 3-2*x + rnorm(100,0,sapply(x,function(x){1+0.5*x^2}))

plot(x,y)

abline(a=3,b=-2,col="grey")

fit.ols = lm(y~x)

abline(fit.ols,lty=2)

Figure 7.2: Scatter-plot of n = 100 data points from the above model. (Here
X ⇠ N (0,9).) Grey line: True regression line. Dashed line: ordinary least squares
regression line.

ols.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.ols = lm(y~x)
Return the errors
return(fit.ols$coefficients - c(3,-2))

}

ols.heterosked.error.stats = function(n,m=10000) {
ols.errors.raw = t(replicate(m,ols.heterosked.example(n)))
transpose gives us a matrix with named columns
intercept.sd = sd(ols.errors.raw[,"(Intercept)"])
slope.sd = sd(ols.errors.raw[,"x"])
return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Code Example 22: Functions to generate heteroskedastic data and fit OLS regression
to it, and to collect error statistics on the results.

19:31 Saturday 9th February, 2013

7.2. HETEROSKEDASTICITY 158

-5 0 5

-2
0

0
20

40
60

80

x

re
si
du
al
s(
fit
.o
ls
)

-5 0 5

0
20
00

40
00

60
00

80
00

x

(r
es
id
ua
ls
(fi
t.o
ls
))
^2

plot(x,residuals(fit.ols))
plot(x,(residuals(fit.ols))^2)

Figure 7.3: Residuals (left) and squared residuals (right) of the ordinary least squares
regression as a function of x. Note the much greater range of the residuals at large
absolute values of x than towards the center; this changing dispersion is a sign of
heteroskedasticity.

squares (Figure 7.5).
This not only looks better, it is better: the estimated line is now 2.67� 1.91x,

with reported standard errors of 0.29 and 0.18. Does this check out with simulation?
(Example 23.)

The standard errors from the simulation are 0.22 for the intercept and 0.23 for
the slope, so R’s internal calculations are working very well.

Why does putting these weights into WLS improve things?

7.2.2 Some Explanations for Weighted Least Squares
Qualitatively, the reason WLS with inverse variance weights works is the following.
OLS tries equally hard to match observations at each data point.1 Weighted least
squares, naturally enough, tries harder to match observations where the weights are
big, and less hard to match them where the weights are small. But each yi contains
not only the true regression function r (xi) but also some noise ✏i . The noise terms
have large magnitudes where the variance is large. So we should want to have small
weights where the noise variance is large, because there the data tends to be far from
the true regression. Conversely, we should put big weights where the noise variance
is small, and the data points are close to the true regression.

1Less anthropomorphically, the objective function in Eq. 7.1 has the same derivative with respect to
the squared error at each point, @ M SE

@ (yi�~xi ·�)2
= 1

n .

19:31 Saturday 9th February, 2013

159 7.2. HETEROSKEDASTICITY

Figure 7.4: Statistician (right) consulting the Oracle of Regression (left) about the
proper weights to use to overcome heteroskedasticity. (Image from http://en.wikipedia.org/wiki/Image:
Pythia1.jpg.)

19:31 Saturday 9th February, 2013

7.2. HETEROSKEDASTICITY 160

-5 0 5

-2
0

0
20

40
60

80
10
0

x

y

fit.wls = lm(y~x, weights=1/(1+0.5*x^2))

abline(fit.wls,lty=3)

Figure 7.5: Figure 7.2, with addition of weighted least squares regression line (dotted).

19:31 Saturday 9th February, 2013

161 7.2. HETEROSKEDASTICITY

wls.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.wls = lm(y~x,weights=1/(1+0.5*x^2))
Return the errors
return(fit.wls$coefficients - c(3,-2))

}

wls.heterosked.error.stats = function(n,m=10000) {
wls.errors.raw = t(replicate(m,wls.heterosked.example(n)))
transpose gives us a matrix with named columns
intercept.sd = sd(wls.errors.raw[,"(Intercept)"])
slope.sd = sd(wls.errors.raw[,"x"])
return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Code Example 23: Linear regression of heteroskedastic data, using weighted least-
squared regression.

The qualitative reasoning in the last paragraph doesn’t explain why the weights
should be inversely proportional to the variances, wi / 1/�2

xi
— why not wi / 1/�xi

,
for instance? Look at the equation for the WLS estimates again:

b�W LS = (x
T wx)�1xT wy (7.5)

Imagine holding x constant, but repeating the experiment multiple times, so that we
get noisy values of y. In each experiment, Yi = ~xi ·�+ ✏i , where E

⇥
✏i
⇤
= 0 and

Var
⇥
✏i
⇤
= �2

xi
. So

b�W LS = (xT wx)�1xT wx�+ (xT wx)�1xT w✏ (7.6)

= �+ (xT wx)�1xT w✏ (7.7)

Since E[✏] = 0, the WLS estimator is unbiased:

E
h b�W LS

i
=� (7.8)

In fact, for the j th coefficient,

b� j = � j +[(x
T wx)�1xT w✏] j (7.9)

= � j +
nX

i=1
Hj i (w)✏i (7.10)

where in the last line I have bundled up (xT wx)�1xT w as a matrix H(w), with the
argument to remind us that it depends on the weights. Since the WLS estimate is

19:31 Saturday 9th February, 2013

7.2. HETEROSKEDASTICITY 162

unbiased, it’s natural to want it to also have a small variance, and

Var
h b� j

i
=

nX
i=1

Hj i (w)�
2
xi

(7.11)

It can be shown — the result is called the generalized Gauss-Markov theorem —
that picking weights to minimize the variance in the WLS estimate has the unique
solution wi = 1/�2

xi
. It does not require us to assume the noise is Gaussian, but the

proof is a bit tricky (see Appendix D).
A less general but easier-to-grasp result comes from adding the assumption that

the noise around the regression line is Gaussian — that

Y = ~x ·�+ ✏, ✏⇠N (0,�2
x) (7.12)

The log-likelihood is then (EXERCISE 1)

� n
2

ln2⇡� 1
2

nX
i=1

log�2
xi
� 1

2

nX
i=1

(yi �~xi ·�)2
�2

xi

(7.13)

If we maximize this with respect to �, everything except the final sum is irrelevant,
and so we minimize

nX
i=1

(yi �~xi ·�)2
�2

xi

(7.14)

which is just weighted least squares with wi = 1/�2
xi

. So, if the probabilistic assump-
tion holds, WLS is the efficient maximum likelihood estimator.

7.2.3 Finding the Variance and Weights
All of this was possible because the Oracle told us what the variance function was.
What do we do when the Oracle is not available (Figure 7.6)?

Under some situations we can work things out for ourselves, without needing an
oracle.

• We know, empirically, the precision of our measurement of the response vari-
able — we know how precise our instruments are, or each value of the response
is really an average of several measurements so we can use their standard devia-
tions, etc.

• We know how the noise in the response must depend on the input variables.
For example, when taking polls or surveys, the variance of the proportions we
find should be inversely proportional to the sample size. So we can make the
weights proportional to the sample size.

Both of these outs rely on kinds of background knowledge which are easier to
get in the natural or even the social sciences than in many industrial applications.
However, there are approaches for other situations which try to use the observed
residuals to get estimates of the heteroskedasticity; this is the topic of the next section.

19:31 Saturday 9th February, 2013

163 7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION

Figure 7.6: The Oracle may be out (left), or too creepy to go visit (right). What then?
(Left, the sacred oak of the Oracle of Dodona, copyright 2006 by Flickr user “essayen”, http://flickr.com/photos/essayen/245236125/; right, the entrace to
the cave of the Sibyl of Cumæ, copyright 2005 by Flickr user “pverdicchio”, http://flickr.com/photos/occhio/17923096/. Both used under Creative Commons
license.)

7.3 Conditional Variance Function Estimation
Remember that there are two equivalent ways of defining the variance:

Var[X] = E
î

X 2
ó
� (E[X])2 = E

î
(X �E[X])2

ó
(7.15)

The latter is more useful for us when it comes to estimating variance functions. We
have already figured out how to estimate means — that’s what all this previous work
on smoothing and regression is for — and the deviation of a random variable from its
mean shows up as a residual.

There are two generic ways to estimate conditional variances, which differ slightly
in how they use non-parametric smoothing. We can call these the squared residuals
method and the log squared residuals method. Here is how the first one goes.

1. Estimate r (x) with your favorite regression method, getting r̂ (x).

2. Construct the squared residuals, ui = (yi � r̂ (xi))
2.

3. Use your favorite non-parametric method to estimate the conditional mean of
the ui , call it bq(x).

4. Predict the variance using b�2
x = bq(x).

The log-squared residuals method goes very similarly.2

1. Estimate r (x) with your favorite regression method, getting r̂ (x).

2. Construct the log squared residuals, zi = log (yi � r̂ (xi))
2.

3. Use your favorite non-parametric method to estimate the conditional mean of
the zi , call it ŝ (x).

2I learned it from Wasserman (2006, pp. 87–88).

19:31 Saturday 9th February, 2013

7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION 164

4. Predict the variance using b�2
x = expbs (x).

The quantity yi � r̂ (xi) is the i th residual. If br ⇡ r , then the residuals should
have mean zero. Consequently the variance of the residuals (which is what we want)
should equal the expected squared residual. So squaring the residuals makes sense,
and the first method just smoothes these values to get at their expectations.

What about the second method — why the log? Basically, this is a convenience —
squares are necessarily non-negative numbers, but lots of regression methods don’t
easily include constraints like that, and we really don’t want to predict negative vari-
ances.3 Taking the log gives us an unbounded range for the regression.

Strictly speaking, we don’t need to use non-parametric smoothing for either method.
If we had a parametric model for �2

x , we could just fit the parametric model to the
squared residuals (or their logs). But even if you think you know what the variance
function should look like it, why not check it?

We came to estimating the variance function because of wanting to do weighted
least squares, but these methods can be used more generally. It’s often important to
understand variance in its own right, and this is a general method for estimating it.
Our estimate of the variance function depends on first having a good estimate of the
regression function

7.3.1 Iterative Refinement of Mean and Variance: An Example
The estimate b�2

x depends on the initial estimate of the regression function r̂ (x). But,
as we saw when we looked at weighted least squares, taking heteroskedasticity into
account can change our estimates of the regression function. This suggests an iterative
approach, where we alternate between estimating the regression function and the
variance function, using each to improve the other. That is, we take either method
above, and then, once we have estimated the variance function b�2

x , we re-estimate r̂
using weighted least squares, with weights inversely proportional to our estimated
variance. Since this will generally change our estimated regression, it will change the
residuals as well. Once the residuals have changed, we should re-estimate the variance
function. We keep going around this cycle until the change in the regression function
becomes so small that we don’t care about further modifications. It’s hard to give a
strict guarantee, but usually this sort of iterative improvement will converge.

Let’s apply this idea to our example. Figure 7.3b already plotted the residuals
from OLS. Figure 7.7 shows those squared residuals again, along with the true vari-
ance function and the estimated variance function.

The OLS estimate of the regression line is not especially good (b�0 = 2.56 versus
�0 = 3, b�1 = �1.65 versus �1 = �2), so the residuals are systematically off, but
it’s clear from the figure that kernel smoothing of the squared residuals is picking
up on the heteroskedasticity, and getting a pretty reasonable picture of the variance
function.

3Occasionally you do see people doing things like claiming that genetics explains more than 100% of
the variance in some psychological trait, and so the contributions of environment and up-bringing have
negative variance. Some of them — for instance, Alford et al. (2005) — manage to say this with a straight
face.

19:31 Saturday 9th February, 2013

165 7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION

-5 0 5

0
20
00

40
00

60
00

80
00

x

sq
ua

re
d

re
si

du
al

s

plot(x,residuals(fit.ols)^2,ylab="squared residuals")
curve((1+x^2/2)^2,col="grey",add=TRUE)
require(np)
var1 <- npreg(residuals(fit.ols)^2 ~ x)
grid.x <- seq(from=min(x),to=max(x),length.out=300)
lines(grid.x,predict(var1,exdat=grid.x))

Figure 7.7: Points: actual squared residuals from the OLS line. Grey curve: true
variance function, �2

x = (1+ x2/2)2. Black curve: kernel smoothing of the squared
residuals, using npreg.

19:31 Saturday 9th February, 2013

7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION 166

-5 0 5

-2
0

0
20

40
60

80
10
0

x

y

-5 0 5

0
20
00

40
00

60
00

80
00

x

sq
ua

re
d

re
si

du
al

s

fit.wls1 <- lm(y~x,weights=1/fitted(var1))
plot(x,y)
abline(a=3,b=-2,col="grey")
abline(fit.ols,lty=2)
abline(fit.wls1,lty=3)
plot(x,(residuals(fit.ols))^2,ylab="squared residuals")
points(x,(residuals(fit.wls1))^2,pch=15)
lines(grid.x,predict(var1,exdat=grid.x))
var2 <- npreg(residuals(fit.wls1)^2 ~ x)
curve((1+x^2/2)^2,col="grey",add=TRUE)
lines(grid.x,predict(var2,exdat=grid.x),lty=3)

Figure 7.8: Left: As in Figure 7.2, but with the addition of the weighted least squares
regression line (dotted), using the estimated variance from Figure 7.7 for weights.
Right: As in Figure 7.7, but with the addition of the residuals from the WLS regres-
sion (black squares), and the new estimated variance function (dotted curve).

Now we use the estimated variance function to re-estimate the regression line,
with weighted least squares.

> fit.wls1 <- lm(y~x,weights=1/fitted(var1))
> coefficients(fit.wls1)
(Intercept) x

2.595860 -1.876042
> var2 <- npreg(residuals(fit.wls1)^2 ~ x)

The slope has changed substantially, and in the right direction (Figure 7.8a). The
residuals have also changed (Figure 7.8b), and the new variance function is closer to
the truth than the old one.

Since we have a new variance function, we can re-weight the data points and re-
estimate the regression:

19:31 Saturday 9th February, 2013

167 7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION

> fit.wls2 <- lm(y~x,weights=1/fitted(var2))
> coefficients(fit.wls2)
(Intercept) x

2.625295 -1.914075
> var3 <- npreg(residuals(fit.wls2)^2 ~ x)

Since we know that the true coefficients are 3 and�2, we know that this is moving in
the right direction. If I hadn’t told you what they were, you could still observe that
the difference in coefficients between fit.wls1 and fit.wls2 is smaller than that
between fit.ols and fit.wls1, which is a sign that this is converging.

I will spare you the plot of the new regression and of the new residuals. When we
update a few more times:

> fit.wls3 <- lm(y~x,weights=1/fitted(var3))
> coefficients(fit.wls3)
(Intercept) x

2.630249 -1.920476
> var4 <- npreg(residuals(fit.wls3)^2 ~ x)
> fit.wls4 <- lm(y~x,weights=1/fitted(var4))
> coefficients(fit.wls4)
(Intercept) x

2.631063 -1.921540

By now, the coefficients of the regression are changing in the fourth significant digit,
and we only have 100 data points, so the imprecision from a limited sample surely
swamps the changes we’re making, and we might as well stop.

Manually going back and forth between estimating the regression function and
estimating the variance function is tedious. We could automate it with a function,
which would look something like this:

iterative.wls <- function(x,y,tol=0.01,max.iter=100) {
iteration <- 1
old.coefs <- NA
regression <- lm(y~x)
coefs <- coefficients(regression)
while (is.na(old.coefs) ||

((max(coefs - old.coefs) > tol) && (iteration < max.iter))) {
variance <- npreg(residuals(regression)^2 ~ x)
old.coefs <- coefs
iteration <- iteration+1
regression <- lm(y~x,weights=1/fitted(variance))
coefs <- coefficients(regression)

}
return(list(regression=regression,variance=variance,iterations=iteration))

}

This starts by doing an unweighted linear regression, and then alternates between
WLS for the getting the regression and kernel smoothing for getting the variance. It

19:31 Saturday 9th February, 2013

7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION 168

stops when no parameter of the regression changes by more than tol, or when it’s
gone around the cycle max.iter times.4 This code is a bit too inflexible to be really
“industrial strength” (what if we wanted to use a data frame, or a more complex
regression formula?), but shows the core idea.

7.3.2 Real Data Example: Old Heteroskedastic
§5.3.2 introduced the geyser data set, which is about predicting the waiting time
between consecutive eruptions of the “Old Faithful” geyser at Yellowstone National
Park from the duration of the latest eruption. Our exploration there showed that a
simple linear model (of the kind often fit to this data in textbooks and elementary
classes) is not very good, and raised the suspicion that one important problem was
heteroskedasticity. Let’s follow up on that, building on the computational work done
in that section.

The estimated variance function geyser.var does not look particularly flat, but
it comes from applying a fairly complicated procedure (kernel smoothing with data-
driven bandwidth selection) to a fairly limited amount of data (299 observations).
Maybe that’s the amount of wiggliness we should expect to see due to finite-sample
fluctuations? To rule this out, we can make surrogate data from the homoskedastic
model, treat it the same way as the real data, and plot the resulting variance functions
(Figure 7.10). The conditional variance functions estimated from the homoskedastic
model are flat or gently varying, with much less range than what’s seen in the data.

While that sort of qualitative comparison is genuinely informative, one can also
be more quantitative. One might measure heteroskedasticity by, say, evaluating the
conditional variance at all the data points, and looking at the ratio of the interquartile
range to the median. This would be zero for perfect homoskedasticity, and grow as
the dispersion of actual variances around the “typical” variance increased. For the
data, this is IQR(fitted(geyser.var))/median(fitted(geyser.var)) = 0.86.
Simulations from the OLS model give values around 10�15.

There is nothing particularly special about this measure of heteroskedasticity —
after all, I just made it up. The broad point it illustrates is that whenever we have
some sort of quantittive summary statistic we can calculate on our real data, we can
also calculate the same statistic on realizations of the model, and the difference will
then tell us something about how close the simulations, and so the model, come to the
data. In this case, we learn that the linear, homoskedastic model seriously understates
the variability of this data. That leaves open the question of whether the problem is
the linearity or the homoskedasticity; I will leave that question to EXERCISE 5.

4The condition in the while loop is a bit complicated, to ensure that the loop is executed at least once.
Some languages have an until control structure which would simplify this.

19:31 Saturday 9th February, 2013

169 7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION

1 2 3 4 5

0
20
0

40
0

60
0

80
0

Squared residuals and variance estimates versus geyser duration

Duration (minutes)

S
qu

ar
ed

 re
si

du
al

s
of

 li
ne

ar
 m

od
el

 (m
in
ut
es

2)

data
kernel variance
homoskedastic (OLS)

plot(geyser$duration, residuals(fit.ols)^2, cex=0.5, pch=16,
main="Squared residuals and variance estimates versus geyser duration",
xlab="Duration (minutes)",
ylab=expression("Squared residuals of linear model "(minutes^2)))

library(np)
geyser.var <- npreg(residuals(fit.ols)^2~geyser$duration)
duration.order <- order(geyser$duration)
lines(geyser$duration[duration.order],fitted(geyser.var)[duration.order])
abline(h=summary(fit.ols)$sigma^2,lty="dashed")
legend("topleft",

legend=c("data","kernel variance","homoskedastic (OLS)"),
lty=c(-1,1,2),pch=c(16,-1,-1))

Figure 7.9: Squared residuals from the linear model of Figure 5.4, plotted against dura-
tion, along with the unconditional, homoskedastic variance implicit in OLS (dashed),
and a kernel-regression estimate of the conditional variance (solid).

19:31 Saturday 9th February, 2013

7.3. CONDITIONAL VARIANCE FUNCTION ESTIMATION 170

1 2 3 4 5

50
10
0

15
0

20
0

geyser$duration

 re
si

du
al

s(
fit

.o
ls

)^
2

plot(geyser.var)
abline(h=summary(fit.ols)$sigma^2,lty=2)
duration.grid <- seq(from=min(geyser$duration),to=max(geyser$duration),

length.out=300)
one.var.func <- function() {

fit <- lm(waiting ~ duration, data=rgeyser())
var.func <- npreg(residuals(fit)^2 ~ geyser$duration)
lines(duration.grid,predict(var.func,exdat=duration.grid),col="grey")

}
invisible(replicate(10,one.var.func()))

Figure 7.10: The actual conditional variance function estimated from the Old Faith-
ful data (and the linear regression), in black, plus the results of applying the same pro-
cedure to simulations from the homoskedastic linear regression model (grey lines; see
§5.3.2 for the rgeyser() function). The fact that the estimates from the simulations
are all flat or gently sloped suggests that the changes in variance found in the data are
too large to just be sampling noise.

19:31 Saturday 9th February, 2013

171 7.4. RE-SAMPLING RESIDUALS WITH HETEROSKEDASTICITY

7.4 Re-sampling Residuals with Heteroskedasticity
Re-sampling the residuals of a regression, as described in §6.4, assumes that the dis-
tribution of fluctuations around the regression curve is the same for all values of the
input x. Under heteroskedasticity, this is of course not the case. Nonetheless, we can
still re-sample residuals to get bootstrap confidence intervals, standard errors, and so
forth, provided we define and scale them properly. If we have a conditional variance
function �̂2(x), or a conditional standard deviation function ˆs i g ma(x), as well as the
estimated regression function r̂ (x), we can combine them to re-sample heteroskedas-
tic residuals.

1. Construct the standardized residuals, by dividing the actual residuals by the
conditional standard deviation:

⌘i = ✏i/�̂(xi) (7.16)

The ⌘i should now be all the same size (in distribution!), no matter where xi is
in the space of predictors.

2. Re-sample the ⌘i with replacement, to get ⌘̃1, . . . ⌘̃n .

3. Set x̃i = xi .

4. Set ỹi = r̂ (x̃i)+ �̂(x̃i)⌘̃i .

5. Analyze the surrogate data (x̃1, ỹ1), . . . (x̃n , ỹn) like it was real data.

Of course, this still assumes that the only difference in distribution for the noise
at different values of x is its scale.

7.5 Local Linear Regression
Switching gears, recall from Chapter 2 that one reason it can be sensible to use a linear
approximation to the true regression function r (x) is that we can always5 Taylor-
expand the latter around any point x0,

r (x) = r (x0)+
1X

k=1

(x � x0)
k

k!
d k r

d r k

�����
x=x0

(7.17)

and similarly with all the partial derivatives in higher dimensions. If we truncate the
series at first order, r (x)⇡ r (x0)+(x�x0)r 0(x0), we see that the first-order coefficient
r 0(x0) is the best linear prediction coefficient, at least when x is sufficiently close to
x0. The snag in this line of argument is that if r (x) isn’t really linear, then r 0 isn’t a
constant, and the optimal linear predictor to use depends on where we want to make
predictions.

5At least if r (x) is differentiable.

19:31 Saturday 9th February, 2013

7.5. LOCAL LINEAR REGRESSION 172

However, statisticians are thrifty people, and having assembled all the machinery
for linear regression, they are loathe to throw it away just because the fundamental
model is wrong. If we can’t fit one line, why not fit many? If each point has a dif-
ferent best linear regression, why not estimate them all? Thus the idea of local linear
regression: fit a different linear regression everywhere, weighting the data points by
how close they are to the point of interest6.

The very simplest approach we could take would be to divide up the range of x
into so many bins, and fit a separate linear regression for each bin. This is unsatisfying
for at least three reasons. First, it gives us weird discontinuities at the boundaries
between bins. Second, it introduces an odd sort of bias, where our predictions near
the boundaries of a bin depend strongly on data from the other side of the bin, and
not at all on nearby data points just across the border, which is weird. Third, we need
to pick the bins.

The next simplest approach would be to first figure out where we want to make
a prediction (say x), and do a linear regression with all the data points which were
sufficiently close, |xi � x|  h for some h. Now we are basically using a uniform-
density kernel to weight the data points. This eliminates two problems from the
binning idea — the examples we include are always centered on the x we’re trying to
get a prediction for, and we just need to pick one bandwidth h rather than placing
all the bin boundaries. But still, each example point always has either weight 0 or
weight 1, so our predictions change jerkily as training points fall into or out of the
window. It generally works nicer to have the weights change more smoothly with
the distance, starting off large and then gradually trailing to zero.

By now bells may be going off in your head, as this sounds very similar to the
kernel regression. In fact, kernel regression is what happens when we truncate Eq.
7.17 at zeroth order, getting locally constant regression. Here’s the problem we’re
setting up:

argmin
m(x)

1
n

nX
i=1

wi (x)
�

yi �m(x)
�2 (7.18)

which has the solution

bm(x) =
Pn

i=1 wi (x)yiPn
j=1 wj (x)

(7.19)

which just is our kernel regression, with the weights being proportional to the ker-
nels, wi (x) / K(xi , x). (Without loss of generality, we can take the constant of pro-
portionality to be 1.)

What about locally linear regression? The optimization problem is

argmin
m,�

1
n

nX
i=1

wi (x)
�

yi �m(x)� �xi � x
� ·�(x)�2 (7.20)

where again we can write wi (x) as proportional to some kernel function, wi (x) /
K(xi , x). To solve this, abuse notation slightly to define zi = (1, xi � x), i.e., the

6Some people say “local linear” and some “locally linear”.

19:31 Saturday 9th February, 2013

173 7.5. LOCAL LINEAR REGRESSION

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

tr
ic

u
b

ic
 f

u
n

c
ti
o

n

curve((1-abs(x)^3)^3,from=-1,to=1,ylab="tricubic function")

Figure 7.11: The tricubic kernel, with broad plateau where |x| ⇡ 0, and the smooth
fall-off to zero at |x|= 1.

displacement from x, with a 1 stuck at the beginning to (as usual) handle the intercept.
Now, by the machinery above,

€(m,�(x)) = (zT w(x)z)�1zT w(x)y (7.21)

and the prediction is just the intercept, m̂. If you need an estimate of the first deriva-
tives, those are the b�. Notice, from Eq. 7.21, that if the weights given to each training
point change smoothly with x, then the predictions will also change smoothly.7

Using a smooth kernel whose density is positive everywhere, like the Gaussian,
ensures that the weights will change smoothly. But we could also use a kernel which
goes to zero outside some finite range, so long as the kernel rises gradually from zero
inside the range. For locally linear regression, a common choice of kernel is therefore
the tri-cubic,

K(xi , x) =

1�
Ç |xi � x0|

h

å3!3

(7.22)

if |x � xi |< h, and = 0 otherwise (Figure 7.11).

7.5.1 Advantages and Disadvantages of Locally Linear Regres-
sion

Why would we use locally linear regression, if we already have kernel regression?
7Notice that local linear predictors are still linear smoothers as defined in Chapter 1, (i.e., the predic-

tions are linear in the yi), but they are not, strictly speaking, kernel smoothers, since you can’t re-write the
last equation in the form of a kernel average.

19:31 Saturday 9th February, 2013

7.5. LOCAL LINEAR REGRESSION 174

1. You may recall that when we worked out the bias of kernel smoothers (Eq.
4.10 in Chapter 4), we got a contribution that was proportional to r 0(x). If
we do an analogous analysis for locally linear regression, the bias is the same,
except that this derivative term goes away.

2. Relatedly, that analysis we did of kernel regression tacitly assumed the point
we were looking at was in the middle of the training data (or at least less than
h from the border). The bias gets worse near the edges of the training data.
Suppose that the true r (x) is decreasing in the vicinity of the largest xi . (See
the grey curve in Figure 7.12.) When we make our predictions there, in ker-
nel regression we can only average values of yi which tend to be systematically
larger than the value we want to predict. This means that our kernel predic-
tions are systematically biased upwards, and the size of the bias grows with
r 0(x). (See the black line in Figure 7.12 at the lower right.) If we use a locally
linear model, however, it can pick up that there is a trend, and reduce the edge
bias by extrapolating it (dashed line in the figure).

3. The predictions of locally linear regression tend to be smoother than those
of kernel regression, simply because we are locally fitting a smooth line rather
than a flat constant. As a consequence, estimates of the derivative d r̂

d x tend to be
less noisy when r̂ comes from a locally linear model than a kernel regression.

Of course, total prediction error depends not only on the bias but also on the
variance. Remarkably enough, the variance for kernel regression and locally linear
regression is the same. Since locally linear regression has smaller bias, the former is
often predictively superior.

There are several packages which implement locally linear regression. Since we
are already using np, one of the simplest is to set the regtype="ll" in npreg.8 There
are several other packages which support it, notably KernSmooth and locpoly.

As the name of the latter suggests, there is no reason we have to stop at locally
linear models, and we could use local polynomials of any order. The main reason to
use a higher-order local polynomial, rather than a locally-linear or locally-constant
model, is to estimate higher derivatives. Since this is a somewhat specialized topic, I
will not say more about it.

7.5.2 Lowess

There is however one additional topic in locally linear models which is worth men-
tioning. This is the variant called lowess or loess.9 The basic idea is to fit a locally
linear model, with a kernel which goes to zero outside a finite window and rises
gradually inside it, typically the tri-cubic I plotted earlier. The wrinkle, however, is
that rather than solving a least squares problem, it minimizes a different and more

8"ll" stands for “locally linear”, of course; the default is regtype="lc", for “locally constant”.
9I have heard this name explained as an acronym for both “locally weighted scatterplot smoothing” and

“locally weight sum of squares”.

19:31 Saturday 9th February, 2013

175 7.5. LOCAL LINEAR REGRESSION

0.5 1.0 1.5 2.0 2.5 3.0

2
4

6
8

x

y

x <- runif(30,max=3)
y <- 9-x^2 + rnorm(30,sd=0.1)
plot(x,y); rug(x,side=1, col="grey"); rug(y,side=2, col="grey")
curve(9-x^2,col="grey",add=TRUE,lwd=3)
grid.x <- seq(from=0,to=3,length.out=300)
np0 <- npreg(y~x); lines(grid.x,predict(np0, exdat=grid.x))
np1 <- npreg(y~x,regtype="ll"); lines(grid.x,predict(np1, exdat=grid.x),lty=2)

Figure 7.12: Points are samples from the true, nonlinear regression function shown in
grey. The solid black line is a kernel regression, and the dashed line is a locally linear
regression. Note that the locally linear model is smoother than the kernel regression,
and less biased when the true curve has a non-zero bias at a boundary of the data (far
right).

19:31 Saturday 9th February, 2013

7.6. EXERCISES 176

“robust” loss function,

argmin
�(x)

1
n

nX
i=1

wi (x)`(y �~xi ·�(x)) (7.23)

where `(a) doesn’t grow as rapidly for large a as a2. The idea is to make the fitting
less vulnerable to occasional large outliers, which would have very large squared er-
rors, unless the regression curve went far out of its way to accommodate them. For
instance, we might have `(a) = a2 if |a| < 1, and `(a) = 2|a|� 1 otherwise10. We
will come back to robust estimation later, but I bring it up now because it’s a very
common smoothing technique, especially for visualization.

Lowess smoothing is implemented in the default R packages through the func-
tion lowess (rather basic), and through the function loess (more sophisticated), as
well as in the CRAN package locfit (more sophisticated still). The lowess idea can
be combined with local fitting of higher-order polynomials; the loess and locfit
commands both support this.

7.6 Exercises
To think through or experiment with, not to hand in.

1. Show that the model of Eq. 7.12 has the log-likelihood given by Eq. 7.13

2. Do the calculus to verify Eq. 7.4.

3. Is wi = 1 a necessary as well as a sufficient condition for Eq. 7.3 and Eq. 7.1 to
have the same minimum?

4. The text above looked at whether WLS gives better parameter estimates than
OLS when there is heteroskedasticity, and we know and use the variance. Mod-
ify the code for to see which one has better generalization error.

5. COMPUTING §7.3.2 looked at the residuals of the linear regression model for
the Old Faithful geyser data, and showed that they would imply lots of het-
eroskedasticity. This might, however, be an artifact of inappropriately using a
linear model. Use either kernel regression (cf. §6.4.2) or local linear regression
to estimate the conditional mean of waiting given duration, and see whether
the apparent heteroskedasticity goes away.

6. Should local linear regression do better or worse than ordinary least squares
under heteroskedasticity? What exactly would this mean, and how might you
test your ideas?

10This is called the Huber loss; it continuously interpolates between looking like squared error and
looking like absolute error. This means that when errors are small, it gives results very like least-squares,
but it is resistant to outliers.

19:31 Saturday 9th February, 2013

19:31 Saturday 9th February, 2013

Chapter 8

Splines

8.1 Smoothing by Directly Penalizing Curve Flexibil-
ity

Let’s go back to the problem of smoothing one-dimensional data. We imagine, that
is to say, that we have data points (x1, y1), (x2, y2), . . . (xn , yn), and we want to find a
function r̂ (x) which is a good approximation to the true conditional expectation or
regression function r (x). Previously, we rather indirectly controlled how irregular
we allowed our estimated regression curve to be, by controlling the bandwidth of our
kernels. But why not be more direct, and directly control irregularity?

A natural way to do this, in one dimension, is to minimize the spline objective
function

L (m,�)⌘ 1
n

nX
i=1
(yi �m(xi))

2+�
Z

d x(m00(x))2 (8.1)

The first term here is just the mean squared error of using the curve m(x) to predict
y. We know and like this; it is an old friend.

The second term, however, is something new for us. m00 is the second derivative
of m with respect to x — it would be zero if m were linear, so this measures the
curvature of m at x. The sign of m00 says whether the curvature is concave or convex,
but we don’t care about that so we square it. We then integrate this over all x to say
how curved m is, on average. Finally, we multiply by � and add that to the MSE.
This is adding a penalty to the MSE criterion — given two functions with the same
MSE, we prefer the one with less average curvature. In fact, we are willing to accept
changes in m that increase the MSE by 1 unit if they also reduce the average curvature
by at least �.

The solution to this minimization problem,

r̂� = argmin
m
L (m,�) (8.2)

is a function of x, or curve, called a smoothing spline, or smoothing spline func-

177

