
23:15 Wednesday 27th February, 2013

Chapter 12

Logistic Regression

12.1 Modeling Conditional Probabilities

So far, we either looked at estimating the conditional expectations of continuous
variables (as in regression), or at estimating distributions. There are many situations
where however we are interested in input-output relationships, as in regression, but
the output variable is discrete rather than continuous. In particular there are many
situations where we have binary outcomes (it snows in Pittsburgh on a given day, or
it doesn’t; this squirrel carries plague, or it doesn’t; this loan will be paid back, or
it won’t; this person will get heart disease in the next five years, or they won’t). In
addition to the binary outcome, we have some input variables, which may or may
not be continuous. How could we model and analyze such data?

We could try to come up with a rule which guesses the binary output from the
input variables. This is called classification, and is an important topic in statistics
and machine learning. However, simply guessing “yes” or “no” is pretty crude —
especially if there is no perfect rule. (Why should there be a perfect rule?) Something
which takes noise into account, and doesn’t just give a binary answer, will often be
useful. In short, we want probabilities — which means we need to fit a stochastic
model.

What would be nice, in fact, would be to have conditional distribution of the
response Y , given the input variables, Pr (Y |X). This would tell us about how precise
our predictions are. If our model says that there’s a 51% chance of snow and it doesn’t
snow, that’s better than if it had said there was a 99% chance of snow (though even
a 99% chance is not a sure thing). We will see, in Chapter 15, general approaches
to estimating conditional probabilities non-parametrically, which can use the kernels
for discrete variables from Chapter 4. While there are a lot of merits to this approach,
it does involve coming up with a model for the joint distribution of outputs Y and
inputs X , which can be quite time-consuming.

Let’s pick one of the classes and call it “1” and the other “0”. (It doesn’t mat-
ter which is which. Then Y becomes an indicator variable, and you can convince
yourself that Pr (Y = 1) = E[Y]. Similarly, Pr (Y = 1|X = x) = E[Y |X = x]. (In

231

12.2. LOGISTIC REGRESSION 232

a phrase, “conditional probability is the conditional expectation of the indicator”.)
This helps us because by this point we know all about estimating conditional ex-
pectations. The most straightforward thing for us to do at this point would be to
pick out our favorite smoother and estimate the regression function for the indicator
variable; this will be an estimate of the conditional probability function.

There are two reasons not to just plunge ahead with that idea. One is that proba-
bilities must be between 0 and 1, but our smoothers will not necessarily respect that,
even if all the observed yi they get are either 0 or 1. The other is that we might be
better off making more use of the fact that we are trying to estimate probabilities, by
more explicitly modeling the probability.

Assume that Pr (Y = 1|X = x) = p(x;✓), for some function p parameterized by
✓. parameterized function ✓, and further assume that observations are independent
of each other. The the (conditional) likelihood function is

nY
i=1

Pr
�
Y = yi |X = xi
�
=

nY
i=1

p(xi ;✓)
yi (1� p(xi ;✓)

1�yi) (12.1)

Recall that in a sequence of Bernoulli trials y1, . . . yn , where there is a constant
probability of success p, the likelihood is

nY
i=1

pyi (1� p)1�yi (12.2)

As you learned in basic statistics, this likelihood is maximized when p = p̂ = n�1Pn
i=1 yi .

If each trial had its own success probability pi , this likelihood becomes
nY

i=1
pyi

i (1� pi)
1�yi (12.3)

Without some constraints, estimating the “inhomogeneous Bernoulli” model by max-
imum likelihood doesn’t work; we’d get p̂i = 1 when yi = 1, p̂i = 0 when yi = 0,
and learn nothing. If on the other hand we assume that the pi aren’t just arbitrary
numbers but are linked together, if we model the probabilities, those constraints give
non-trivial parameter estimates, and let us generalize. In the kind of model we are
talking about, the constraint, pi = p(xi ;✓), tells us that pi must be the same when-
ever xi is the same, and if p is a continuous function, then similar values of xi must
lead to similar values of pi . Assuming p is known (up to parameters), the likelihood
is a function of ✓, and we can estimate ✓ by maximizing the likelihood. This chapter
will be about this approach.

12.2 Logistic Regression
To sum up: we have a binary output variable Y , and we want to model the condi-
tional probability Pr (Y = 1|X = x) as a function of x; any unknown parameters in
the function are to be estimated by maximum likelihood. By now, it will not surprise
you to learn that statisticians have approach this problem by asking themselves “how
can we use linear regression to solve this?”

23:15 Wednesday 27th February, 2013

233 12.2. LOGISTIC REGRESSION

1. The most obvious idea is to let p(x) be a linear function of x. Every increment
of a component of x would add or subtract so much to the probability. The
conceptual problem here is that p must be between 0 and 1, and linear func-
tions are unbounded. Moreover, in many situations we empirically see “dimin-
ishing returns” — changing p by the same amount requires a bigger change in
x when p is already large (or small) than when p is close to 1/2. Linear models
can’t do this.

2. The next most obvious idea is to let log p(x) be a linear function of x, so that
changing an input variable multiplies the probability by a fixed amount. The
problem is that logarithms are unbounded in only one direction, and linear
functions are not.

3. Finally, the easiest modification of log p which has an unbounded range is the
logistic (or logit) transformation, log p

1�p . We can make this a linear func-
tion of x without fear of nonsensical results. (Of course the results could still
happen to be wrong, but they’re not guaranteed to be wrong.)

This last alternative is logistic regression.
Formally, the model logistic regression model is that

log
p(x)

1� p(x)
=�0+ x ·� (12.4)

Solving for p, this gives

p(x; b , w) =
e�0+x·�

1+ e�0+x·� =
1

1+ e�(�0+x·�) (12.5)

Notice that the over-all specification is a lot easier to grasp in terms of the transformed
probability that in terms of the untransformed probability.1

To minimize the mis-classification rate, we should predict Y = 1 when p � 0.5
and Y = 0 when p < 0.5. This means guessing 1 whenever�0+ x ·� is non-negative,
and 0 otherwise. So logistic regression gives us a linear classifier. The decision
boundary separating the two predicted classes is the solution of �0 + x · � = 0,
which is a point if x is one dimensional, a line if it is two dimensional, etc. One can
show (exercise!) that the distance from the decision boundary is�0/k�k+x ·�/k�k.
Logistic regression not only says where the boundary between the classes is, but also
says (via Eq. 12.5) that the class probabilities depend on distance from the boundary,
in a particular way, and that they go towards the extremes (0 and 1) more rapidly
when k�k is larger. It’s these statements about probabilities which make logistic
regression more than just a classifier. It makes stronger, more detailed predictions,
and can be fit in a different way; but those strong predictions could be wrong.

Using logistic regression to predict class probabilities is a modeling choice, just
like it’s a modeling choice to predict quantitative variables with linear regression.

1Unless you’ve taken statistical mechanics, in which case you recognize that this is the Boltzmann
distribution for a system with two states, which differ in energy by �0+ x ·�.

23:15 Wednesday 27th February, 2013

12.2. LOGISTIC REGRESSION 234

-

+

-

+
+

+

- +

-

+

+

+

+

-
-

-

-

+

+

-

+

+
+

-

+

-

+

+

-

-

+

+

-
+

+

-

-

+

+

-

+

+ -

+-
+

-

+

-+

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Logistic regression with b=-0.1, w=(-.2,.2)

x[,1]

x
[,
2
]

-

+

+

+
+

+

+ -

+

+

-

-

-

-
-

+

-

-

-

+

-

-
-

-

-

-

+

-

-

+

+

+

-
-

+

+

-

+

-
-

+

+ -

-+
-

+

+

--

-1.0 -0.5 0.0 0.5 1.0
-1
.0

-0
.5

0
.0

0
.5

1
.0

Logistic regression with b=-0.5, w=(-1,1)

x[,1]

x
[,
2
]

-

-

-

-
-

+

- -

+

+

-

-

-

+
-

-

+

+

-

+

-

-
-

-

-

-

+

+

-

-

-

-

-
-

+

+

-

-

-
-

+

+ +

-+
-

+

+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Logistic regression with b=-2.5, w=(-5,5)

x[,1]

x
[,
2
]

-

-

-

-
-

+

- -

+

+

-

-

-

+
-

-

+

+

-

-

+

-
-

-

-

-

+

+

-

-

-

+

-
-

+

+

-

-

-
-

-

+ +

-
+

-

+

+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Linear classifier with b=
1

2 2
,w=





−1

2
,
1

2






x[,1]

x
[,
2
]

Figure 12.1: Effects of scaling logistic regression parameters. Values of x1 and x2 are
the same in all plots (⇠ Unif(�1,1) for both coordinates), but labels were generated
randomly from logistic regressions with �0 = �0.1, � = (�0.2,0.2) (top left); from
�0 = �0.5, � = (�1,1) (top right); from �0 = �2.5, � = (�5,5) (bottom left); and
from a perfect linear classifier with the same boundary. The large black dot is the
origin.

23:15 Wednesday 27th February, 2013

235 12.2. LOGISTIC REGRESSION

In neither case is the appropriateness of the model guaranteed by the gods, nature,
mathematical necessity, etc. We begin by positing the model, to get something to
work with, and we end (if we know what we’re doing) by checking whether it really
does match the data, or whether it has systematic flaws.

Logistic regression is one of the most commonly used tools for applied statistics
and discrete data analysis. There are basically four reasons for this.

1. Tradition.

2. In addition to the heuristic approach above, the quantity log p/(1� p) plays
an important role in the analysis of contingency tables (the “log odds”). Classi-
fication is a bit like having a contingency table with two columns (classes) and
infinitely many rows (values of x). With a finite contingency table, we can es-
timate the log-odds for each row empirically, by just taking counts in the table.
With infinitely many rows, we need some sort of interpolation scheme; logistic
regression is linear interpolation for the log-odds.

3. It’s closely related to “exponential family” distributions, where the probabil-
ity of some vector v is proportional to exp�0+

Pm
j=1 f j (v)� j . If one of the

components of v is binary, and the functions f j are all the identity function,
then we get a logistic regression. Exponential families arise in many contexts
in statistical theory (and in physics!), so there are lots of problems which can
be turned into logistic regression.

4. It often works surprisingly well as a classifier. But, many simple techniques of-
ten work surprisingly well as classifiers, and this doesn’t really testify to logistic
regression getting the probabilities right.

12.2.1 Likelihood Function for Logistic Regression

Because logistic regression predicts probabilities, rather than just classes, we can fit it
using likelihood. For each training data-point, we have a vector of features, xi , and
an observed class, yi . The probability of that class was either p, if yi = 1, or 1� p, if
yi = 0. The likelihood is then

L(�0,�) =
nY

i=1
p(xi)

yi (1� p(xi)
1�yi (12.6)

23:15 Wednesday 27th February, 2013

12.2. LOGISTIC REGRESSION 236

(I could substitute in the actual equation for p, but things will be clearer in a moment
if I don’t.) The log-likelihood turns products into sums:

`(�0,�) =
nX

i=1
yi log p(xi)+ (1� yi) log1� p(xi) (12.7)

=
nX

i=1
log
�
1� p(xi)
�
+

nX
i=1

yi log
p(xi)

1� p(xi)
(12.8)

=
nX

i=1
log
�
1� p(xi)
�
+

nX
i=1

yi (�0+ xi ·�) (12.9)

=
nX

i=1
� log
Ä

1+ e�0+xi ·�
ä
+

nX
i=1

yi (�0+ xi ·�) (12.10)

where in the next-to-last step we finally use equation 12.4.
Typically, to find the maximum likelihood estimates we’d differentiate the log

likelihood with respect to the parameters, set the derivatives equal to zero, and solve.
To start that, take the derivative with respect to one component of �, say � j .

@ `

@ � j
= �

nX
i=1

1

1+ e�0+xi ·�
e�0+xi ·�xi j +

nX
i=1

yi xi j (12.11)

=
nX

i=1

�
yi � p(xi ;�0,�)

�
xi j (12.12)

We are not going to be able to set this to zero and solve exactly. (That’s a transcenden-
tal equation, and there is no closed-form solution.) We can however approximately
solve it numerically.

12.2.2 Logistic Regression with More Than Two Classes
If Y can take on more than two values, say k of them, we can still use logistic regres-
sion. Instead of having one set of parameters�0,�, each class c in 0 : (k�1)will have
its own offset�(c)0 and vector�(c), and the predicted conditional probabilities will be

Pr
Ä

Y = c |~X = x
ä
=

e�
(c)
0 +x·�(c)

P
c e�

(c)
0 +x·�(c)

(12.13)

You can check that when there are only two classes (say, 0 and 1), equation 12.13
reduces to equation 12.5, with�0 =�

(1)
0 ��

(0)
0 and�=�(1)��(0). In fact, no matter

how many classes there are, we can always pick one of them, say c = 0, and fix its
parameters at exactly zero, without any loss of generality2.

2Since we can arbitrarily chose which class’s parameters to “zero out” without affecting the predicted
probabilities, strictly speaking the model in Eq. 12.13 is unidentified. That is, different parameter settings
lead to exactly the same outcome, so we can’t use the data to tell which one is right. The usual response
here is to deal with this by a convention: we decide to zero out the parameters of the first class, and then
estimate the contrasting parameters for the others.

23:15 Wednesday 27th February, 2013

237 12.3. NEWTON’S METHOD FOR NUMERICAL OPTIMIZATION

Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

12.3 Newton’s Method for Numerical Optimization
There are a huge number of methods for numerical optimization; we can’t cover all
bases, and there is no magical method which will always work better than anything
else. However, there are some methods which work very well on an awful lot of the
problems which keep coming up, and it’s worth spending a moment to sketch how
they work. One of the most ancient yet important of them is Newton’s method (alias
“Newton-Raphson”).

Let’s start with the simplest case of minimizing a function of one scalar variable,
say f (�). We want to find the location of the global minimum, �⇤. We suppose that
f is smooth, and that �⇤ is a regular interior minimum, meaning that the derivative
at�⇤ is zero and the second derivative is positive. Near the minimum we could make
a Taylor expansion:

f (�)⇡ f (�⇤)+
1
2
(���⇤)2 d 2 f

d�2

�����
�=�⇤

(12.14)

(We can see here that the second derivative has to be positive to ensure that f (�) >
f (�⇤).) In words, f (�) is close to quadratic near the minimum.

Newton’s method uses this fact, and minimizes a quadratic approximation to the
function we are really interested in. (In other words, Newton’s method is to replace
the problem we want to solve, with a problem which we can solve.) Guess an ini-
tial point �(0). If this is close to the minimum, we can take a second order Taylor
expansion around �(0) and it will still be accurate:

f (�)⇡ f (�(0)) + (���(0)) d f
d w

�����
�=�(0)

+
1
2

Ä
���(0)
ä2 d 2 f

d w2

�����
�=�(0)

(12.15)

Now it’s easy to minimize the right-hand side of equation 12.15. Let’s abbreviate
the derivatives, because they get tiresome to keep writing out: d f

d w

���
�=�(0)

= f 0(�(0)),
d 2 f
d w2

���
�=�(0)

= f 00(�(0)). We just take the derivative with respect to �, and set it equal

to zero at a point we’ll call �(1):

0 = f 0(�(0)) +
1
2

f 00(�(0))2(�(1)��(0)) (12.16)

�(1) = �(0)� f 0(�(0))

f 00(�(0))
(12.17)

The value �(1) should be a better guess at the minimum �⇤ than the initial one �(0)
was. So if we use it to make a quadratic approximation to f , we’ll get a better ap-
proximation, and so we can iterate this procedure, minimizing one approximation

23:15 Wednesday 27th February, 2013

12.3. NEWTON’S METHOD FOR NUMERICAL OPTIMIZATION 238

and then using that to get a new approximation:

�(n+1) =�(n)� f 0(�(n))

f 00(�(n))
(12.18)

Notice that the true minimum�⇤ is a fixed point of equation 12.18: if we happen to
land on it, we’ll stay there (since f 0(�⇤) = 0). We won’t show it, but it can be proved
that if �(0) is close enough to �⇤, then �(n)! �⇤, and that in general |�(n) ��⇤| =
O(n�2), a very rapid rate of convergence. (Doubling the number of iterations we use
doesn’t reduce the error by a factor of two, but by a factor of four.)

Let’s put this together in an algorithm.

my.newton = function(f,f.prime,f.prime2,beta0,tolerance=1e-3,max.iter=50) {
beta = beta0
old.f = f(beta)
iterations = 0
made.changes = TRUE
while(made.changes & (iterations < max.iter)) {
iterations <- iterations +1
made.changes <- FALSE
new.beta = beta - f.prime(beta)/f.prime2(beta)
new.f = f(new.beta)
relative.change = abs(new.f - old.f)/old.f -1
made.changes = (relative.changes > tolerance)
beta = new.beta
old.f = new.f

}
if (made.changes) {

warning("Newton’s method terminated before convergence")
}
return(list(minimum=beta,value=f(beta),deriv=f.prime(beta),

deriv2=f.prime2(beta),iterations=iterations,
converged=!made.changes))

}

The first three arguments here have to all be functions. The fourth argument is our
initial guess for the minimum,�(0). The last arguments keep Newton’s method from
cycling forever: tolerance tells it to stop when the function stops changing very
much (the relative difference between f (�(n)) and f (�(n+1)) is small), and max.iter
tells it to never do more than a certain number of steps no matter what. The return
value includes the estmated minimum, the value of the function there, and some
diagnostics — the derivative should be very small, the second derivative should be
positive, etc.

You may have noticed some potential problems — what if we land on a point
where f 00 is zero? What if f (�(n+1)) > f (�(n))? Etc. There are ways of handling
these issues, and more, which are incorporated into real optimization algorithms
from numerical analysis — such as the optim function in R; I strongly recommend

23:15 Wednesday 27th February, 2013

239 12.3. NEWTON’S METHOD FOR NUMERICAL OPTIMIZATION

you use that, or something like that, rather than trying to roll your own optimization
code.3

12.3.1 Newton’s Method in More than One Dimension
Suppose that the objective f is a function of multiple arguments, f (�1,�2, . . .�p).
Let’s bundle the parameters into a single vector, w. Then the Newton update is

�(n+1) =�(n)�H�1(�(n))r f (�(n)) (12.19)

wherer f is the gradient of f , its vector of partial derivatives [@ f /@ �1,@ f /@ �2, . . .@ f /@ �p],
and H is the Hessian of f , its matrix of second partial derivatives, Hi j = @ 2 f /@ �i@ � j .

Calculating H and r f isn’t usually very time-consuming, but taking the inverse
of H is, unless it happens to be a diagonal matrix. This leads to various quasi-Newton
methods, which either approximate H by a diagonal matrix, or take a proper inverse
of H only rarely (maybe just once), and then try to update an estimate of H�1(�(n))
as �(n) changes.

12.3.2 Iteratively Re-Weighted Least Squares
This discussion of Newton’s method is quite general, and therefore abstract. In the
particular case of logistic regression, we can make everything look much more “sta-
tistical”.

Logistic regression, after all, is a linear model for a transformation of the proba-
bility. Let’s call this transformation g :

g (p)⌘ log
p

1� p
(12.20)

So the model is
g (p) =�0+ x ·� (12.21)

and Y |X = x ⇠ Binom(1, g�1(�0+x ·�)). It seems that what we should want to do is
take g (y) and regress it linearly on x. Of course, the variance of Y , according to the
model, is going to chance depending on x — it will be (g�1(�0+ x ·�))(1� g�1(�0+
x ·�))— so we really ought to do a weighted linear regression, with weights inversely
proportional to that variance. Since writing g�1(�0+ x ·�) is getting annoying, let’s
abbreviate it by µ (for “mean”), and let’s abbreviate that variance as V (µ).

The problem is that y is either 0 or 1, so g (y) is either�1 or+1. We will evade
this by using Taylor expansion.

g (y)⇡ g (µ)+ (y �µ)g 0(µ)⌘ z (12.22)

The right hand side, z will be our effective response variable, which we will regress
on x. To see why this should give us the right coefficients, substitute for g (µ) in the

3optim actually is a wrapper for several different optimization methods; method=BFGS selects a New-
tonian method; BFGS is an acronym for the names of the algorithm’s inventors.

23:15 Wednesday 27th February, 2013

12.4. GENERALIZED LINEAR MODELS AND GENERALIZED ADDITIVE
MODELS 240

definition of z,

z = �0+ x ·�+ (y �µ)g 0(µ) (12.23)

and notice that, if we’ve got the coefficients right, E[Y |X = x] =µ, so (y�µ) should
be mean-zero noise. In other words, when we have the right coefficients, z is a linear
function of x plus mean-zero noise. That noise doesn’t necessarily have constant
variance, but we can work it out by propagation of error, getting (g 0(µ))2V (µ), and
so use that in weighted least squares to recover �.

Notice that both the weights and z depend on the parameters of our logistic
regression, through µ. So having done this once, we should really use the new pa-
rameters to update z and the weights, and do it again. Eventually, we come to a fixed
point, where the parameter estimates no longer change.

The treatment above is rather heuristic4, but it turns out to be equivalent to using
Newton’s method, only with the expected second derivative of the log likelihood,
instead of its actual value.5 Since, with a large number of observations, the observed
second derivative should be close to the expected second derivative, this is only a
small approximation.

12.4 Generalized Linear Models and Generalized Ad-
ditive Models

Logistic regression is part of a broader family of generalized linear models (GLMs),
where the conditional distribution of the response falls in some parametric family,
and the parameters are set by the linear predictor. Ordinary, least-squares regression
is the case where response is Gaussian, with mean equal to the linear predictor, and
constant variance. Logistic regression is the case where the response is binomial, with
n equal to the number of data-points with the given x (usually but not always 1), and
p is given by Equation 12.5. Changing the relationship between the parameters and
the linear predictor is called changing the link function. For computational reasons,
the link function is actually the function you apply to the mean response to get back
the linear predictor, rather than the other way around — (12.4) rather than (12.5).
There are thus other forms of binomial regression besides logistic regression.6 There
is also Poisson regression (appropriate when the data are counts without any upper
limit), gamma regression, etc.; we will say more about these in Chapter 13.

In R, any standard GLM can be fit using the (base) glm function, whose syn-
tax is very similar to that of lm. The major wrinkle is that, of course, you need

4That is, mathematically incorrect.
5This takes a reasonable amount of algebra to show, so we’ll skip it. The key point however is the

following. Take a single Bernoulli observation with success probability p. The log-likelihood is Y log p+
(1�Y) log1� p. The first derivative with respect to p is Y /p� (1�Y)/(1� p), and the second derivative
is �Y /p2 � (1� Y)/(1� p)2. Taking expectations of the second derivative gives �1/p � 1/(1� p) =
�1/p(1� p). In other words, V (p) = �1/E

⇥
`00
⇤

. Using weights inversely proportional to the variance
thus turns out to be equivalent to dividing by the expected second derivative.

6My experience is that these tend to give similar error rates as classifiers, but have rather different
guesses about the underlying probabilities.

23:15 Wednesday 27th February, 2013

241
12.4. GENERALIZED LINEAR MODELS AND GENERALIZED ADDITIVE

MODELS

to specify the family of probability distributions to use, by the family option —
family=binomial defaults to logistic regression. (See help(glm) for the gory de-
tails on how to do, say, probit regression.) All of these are fit by the same sort of
numerical likelihood maximization.

One caution about using maximum likelihood to fit logistic regression is that it
can seem to work badly when the training data can be linearly separated. The reason
is that, to make the likelihood large, p(xi) should be large when yi = 1, and p should
be small when yi = 0. If �0,�0 is a set of parameters which perfectly classifies the
training data, then c�0, c� is too, for any c > 1, but in a logistic regression the second
set of parameters will have more extreme probabilities, and so a higher likelihood.
For linearly separable data, then, there is no parameter vector which maximizes the
likelihood, since ` can always be increased by making the vector larger but keeping
it pointed in the same direction.

You should, of course, be so lucky as to have this problem.

12.4.1 Generalized Additive Models
A natural step beyond generalized linear models is generalized additive models
(GAMs), where instead of making the transformed mean response a linear function
of the inputs, we make it an additive function of the inputs. This means combining
a function for fitting additive models with likelihood maximization. This is actually
done in R with the same gam function we used for additive models (hence the name).
We will look at how this works in some detail in Chapter 13.

GAMs can be used to check GLMs in much the same way that smoothers can be
used to check parametric regressions: fit a GAM and a GLM to the same data, then
simulate from the GLM, and re-fit both models to the simulated data. Repeated many
times, this gives a distribution for how much better the GAM will seem to fit than
the GLM does, even when the GLM is true. You can then read a p-value off of this
distribution.

12.4.2 An Example (Including Model Checking)
Here’s a worked R example, using the data from the upper right panel of Figure 12.1.
The 50⇥ 2 matrix x holds the input variables (the coordinates are independently and
uniformly distributed on [�1,1]), and y.1 the corresponding class labels, themselves
generated from a logistic regression with �0 =�0.5, �= (�1,1).

> logr = glm(y.1 ~ x[,1] + x[,2], family=binomial)
> logr

Call: glm(formula = y.1 ~ x[, 1] + x[, 2], family = binomial)

Coefficients:
(Intercept) x[, 1] x[, 2]

-0.410 -1.050 1.366

23:15 Wednesday 27th February, 2013

12.4. GENERALIZED LINEAR MODELS AND GENERALIZED ADDITIVE
MODELS 242

Degrees of Freedom: 49 Total (i.e. Null); 47 Residual
Null Deviance: 68.59
Residual Deviance: 58.81 AIC: 64.81
> sum(ifelse(logr$fitted.values<0.5,0,1) != y.1)/length(y.1)
[1] 0.32

The deviance of a model fitted by maximum likelihood is (twice) the difference
between its log likelihood and the maximum log likelihood for a saturated model,
i.e., a model with one parameter per observation. Hopefully, the saturated model
can give a perfect fit.7 Here the saturated model would assign probability 1 to the
observed outcomes8, and the logarithm of 1 is zero, so D = 2`(c�0, b�). The null
deviance is what’s achievable by using just a constant bias b and setting w = 0. The
fitted model definitely improves on that.9

The fitted values of the logistic regression are the class probabilities; this shows
that the error rate of the logistic regression, if you force it to predict actual classes, is
32%. This sounds bad, but notice from the contour lines in the figure that lots of the
probabilities are near 0.5, meaning that the classes are just genuinely hard to predict.

To see how well the logistic regression assumption holds up, let’s compare this to
a GAM.10

> library(gam)
> gam.1 = gam(y.1~lo(x[,1])+lo(x[,2]),family="binomial")
> gam.1
Call:
gam(formula = y.1 ~ lo(x[, 1]) + lo(x[, 2]), family = "binomial")

Degrees of Freedom: 49 total; 41.39957 Residual
Residual Deviance: 49.17522

This fits a GAM to the same data, using lowess smoothing of both input variables.
Notice that the residual deviance is lower. That is, the GAM fits this data better. We
expect this; the question is whether the difference is significant, or within the range
of what we should expect when logistic regression is valid. To test this, we need to
simulate from the logistic regression model.

simulate.from.logr = function(x, coefs) {
require(faraway) # For accessible logit and inverse-logit functions
7The factor of two is so that the deviance will have a � 2 distribution. Specifically, if the model with p

parameters is right, the deviance will have a � 2 distribution with n� p degrees of freedom.
8This is not possible when there are multiple observations with the same input features, but different

classes.
9AIC is of course the Akaike information criterion, �2`+2q , with q being the number of parameters

(here, q = 3). AIC has some truly devoted adherents, especially among non-statisticians, but I have been
deliberately ignoring it and will continue to do so. Basically, to the extent AIC succeeds, it works as
fast, large-sample approximation to doing leave-one-out cross-validation. Claeskens and Hjort (2008) is a
thorough, modern treatment of AIC and related model-selection criteria from a statistical viewpoint.

10Previous examples of using GAMs have mostly used the mgcv package and spline smoothing. There
is no particular reason to switch to the gam library and lowess smoothing here, but there’s also no real
reason not to.

23:15 Wednesday 27th February, 2013

243
12.4. GENERALIZED LINEAR MODELS AND GENERALIZED ADDITIVE

MODELS

n = nrow(x)
linear.part = coefs[1] + x %*% coefs[-1]
probs = ilogit(linear.part) # Inverse logit
y = rbinom(n,size=1,prob=probs)
return(y)

}

Now we simulate from our fitted model, and re-fit both the logistic regression
and the GAM.

delta.deviance.sim = function (x,logistic.model) {
y.new = simulate.from.logr(x,logistic.model$coefficients)
GLM.dev = glm(y.new ~ x[,1] + x[,2], family="binomial")$deviance
GAM.dev = gam(y.new ~ lo(x[,1]) + lo(x[,2]), family="binomial")$deviance
return(GLM.dev - GAM.dev)

}

Notice that in this simulation we are not generating new ~X values. The logistic re-
gression and the GAM are both models for the response conditional on the inputs,
and are agnostic about how the inputs are distributed, or even whether it’s meaning-
ful to talk about their distribution.

Finally, we repeat the simulation a bunch of times, and see where the observed
difference in deviances falls in the sampling distribution.

> delta.dev = replicate(1000,delta.deviance.sim(x,logr))
> delta.dev.observed = logr$deviance - gam.1$deviance # 9.64
> sum(delta.dev.observed > delta.dev)/1000
[1] 0.685

In other words, the amount by which a GAM fits the data better than logistic regres-
sion is pretty near the middle of the null distribution. Since the example data really
did come from a logistic regression, this is a relief.

23:15 Wednesday 27th February, 2013

12.4. GENERALIZED LINEAR MODELS AND GENERALIZED ADDITIVE
MODELS 244

0 10 20 30

0
.0
0

0
.0
2

0
.0
4

0
.0
6

0
.0
8

0
.1
0

Amount by which GAM fits better than logistic regression

Sampling distribution under logistic regression

N = 1000 Bandwidth = 0.8386

D
e
n
s
it
y

Figure 12.2: Sampling distribution for the difference in deviance between a GAM
and a logistic regression, on data generated from a logistic regression. The observed
difference in deviances is shown by the dashed horizontal line.

23:15 Wednesday 27th February, 2013

245 12.5. EXERCISES

12.5 Exercises
To think through, not to hand in.

1. A multiclass logistic regression, as in Eq. 12.13, has parameters �(c)0 and �(c)
for each class c . Show that we can always get the same predicted probabilities
by setting �(c)0 = 0, �(c) = 0 for any one class c , and adjusting the parameters
for the other classes appropriately.

2. Find the first and second derivatives of the log-likelihood for logistic regression
with one predictor variable. Explicitly write out the formula for doing one step
of Newton’s method. Explain how this relates to re-weighted least squares.

23:15 Wednesday 27th February, 2013

