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Chapter 14

Multivariate Distributions

14.1 Review of Definitions
Let’s review some definitions from basic probability. When we have a random vector
~X with p different components, X1,X2, . . .Xp , the joint cumulative distribution
function is

F (~a) = F (a1,a2, . . .ap ) = Pr
Ä

X1  a1,X2  a2, . . .Xp  ap

ä
(14.1)

Thus

F (~b )� F (~a) = Pr
Ä

a1 <X1  b1,a2 <X2  b2, . . .ap <Xp  bp

ä
(14.2)

This is the probability that X is in a (hyper-)rectangle, rather than just in an interval.
The joint probability density function is

p(~x) = p(x1, x2, . . . xp ) =
@ p F (a1, . . .ap )

@ a1 . . .@ ap

�����
~a=~x

(14.3)

Of course,

F (~a) =
Z a1

�1

Z a2

�1
. . .
Z ap

�1
p(x1, x2, . . . xp )d xp . . . d x2d x1 (14.4)

(In this case, the order of integration doesn’t matter. Why?)
From these, and especially from the joint PDF, we can recover the marginal PDF

of any group of variables, say those numbered 1 through q ,

p(x1, x2, . . . xq ) =
Z

p(x1, x2, . . . xp )d xq+1d xq+2 . . . d xp (14.5)

(What are the limits of integration here?) Then the conditional pdf for some variables
given the others — say, use variables 1 through q to condition those numbered q + 1
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14.2. MULTIVARIATE GAUSSIANS 268

through p — just comes from division:

p(xq+1, xq+2, . . . xp |X1 = x1, . . .Xq = xq ) =
p(x1, x2, . . . xp )

p(x1, x2, . . . xq )
(14.6)

These two tricks can be iterated, so, for instance,

p(x3|x1) =
Z

p(x3, x2|x1)d x2 (14.7)

14.2 Multivariate Gaussians
The multivariate Gaussian is just the generalization of the ordinary Gaussian to vec-
tors. Scalar Gaussians are parameterized by a mean µ and a variance �2, so we write
X ⇠N (µ,�2). Multivariate Gaussians, likewise, are parameterized by a mean vector
~µ, and a variance-covariance matrix ⌃, written ~X ⇠MVN (~µ,⌃). The components
of ~µ are the means of the different components of ~X . The i , j th component of⌃ is the
covariance between Xi and Xj (so the diagonal of ⌃ gives the component variances).

Just as the probability density of scalar Gaussian is

p(x) =
Ä

2⇡�2
ä�1/2

exp
®
�1

2
(x �µ)2
�2

´
(14.8)

the probability density of the multivariate Gaussian is

p(~x) = (2⇡det⌃)�p/2 exp
⇢
�1

2
(~x � ~µ) ·⌃�1(~x � ~µ)

�
(14.9)

Finally, remember that the parameters of a Gaussian change along with linear trans-
formations

X ⇠N (µ,�2), aX + b ⇠N (aµ+ b ,a2�2) (14.10)

and we can use this to “standardize” any Gaussian to having mean 0 and variance 1
(by looking at X�µ

� ). Likewise, if

~X ⇠MVN (~µ,⌃) (14.11)

then
a~X +~b ⇠MVN (a~µ+~b ,a⌃aT ) (14.12)

In fact, the analogy between the ordinary and the multivariate Gaussian is so com-
plete that it is very common to not really distinguish the two, and writeN for both.

The multivariate Gaussian density is most easily visualized when p = 2, as in
Figure 14.1. The probability contours are ellipses. The density changes compara-
tively slowly along the major axis, and quickly along the minor axis. The two points
marked + in the figure have equal geometric distance from ~µ, but the one to its right
lies on a higher probability contour than the one above it, because of the directions
of their displacements from the mean.
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library(mvtnorm)
x.points <- seq(-3,3,length.out=100)
y.points <- x.points
z <- matrix(0,nrow=100,ncol=100)
mu <- c(1,1)
sigma <- matrix(c(2,1,1,1),nrow=2)
for (i in 1:100) {

for (j in 1:100) {
z[i,j] <- dmvnorm(c(x.points[i],y.points[j]),mean=mu,sigma=sigma)

}
}
contour(x.points,y.points,z)

Figure 14.1: Probability density contours for a two-dimensional multivariate Gaus-

sian, with mean ~µ =
✓

1
1

◆
(solid dot), and variance matrix ⌃ =

✓
2 1
1 1

◆
. Using

expand.grid, as in Chapter 4, would be more elegant coding than this double for
loop. 23:15 Wednesday 27th February, 2013



14.2. MULTIVARIATE GAUSSIANS 270

14.2.1 Linear Algebra and the Covariance Matrix
We can use some facts from linear algebra to understand the general pattern here, for
arbitrary multivariate Gaussians in an arbitrary number of dimensions. The covari-
ance matrix ⌃ is symmetric and positive-definite, so we know from matrix algebra
that it can be written in terms of its eigenvalues and eigenvectors:

⌃= vT dv (14.13)

where d is the diagonal matrix of the eigenvalues of ⌃, and v is the matrix whose
columns are the eigenvectors of ⌃. (Conventionally, we put the eigenvalues in d
in order of decreasing size, and the eigenvectors in v likewise, but it doesn’t matter
so long as we’re consistent about the ordering.) Because the eigenvectors are all of
length 1, and they are all perpendicular to each other, it is easy to check that vT v= I,
so v�1 = vT and v is an orthogonal matrix. What actually shows up in the equation
for the multivariate Gaussian density is ⌃�1, which is

(vT dv)�1 = v�1d�1
Ä
vT
ä�1
= vT d�1v (14.14)

Geometrically, orthogonal matrices represent rotations. Multiplying by v rotates
the coordinate axes so that they are parallel to the eigenvectors of ⌃. Probabilisti-
cally, this tells us that the axes of the probability-contour ellipse are parallel to those
eigenvectors. The radii of those axes are proportional to the square roots of the eigen-
values. To see that, look carefully at the math. Fix a level for the probability density
whose contour we want, say f0. Then we have

f0 = (2⇡det⌃)�p/2 exp
⇢
�1

2
(~x � ~µ) ·⌃�1(~x � ~µ)

�
(14.15)

c = (~x � ~µ) ·⌃�1(~x � ~µ) (14.16)

= (~x � ~µ)T vT d�1v(~x � ~µ) (14.17)

= (~x � ~µ)T vT d�1/2d�1/2v(~x � ~µ) (14.18)

=
Ä
d�1/2v(~x � ~µ)
äT Ä

d�1/2v(~x � ~µ)
ä

(14.19)

=
���d�1/2v(~x � ~µ)
���2 (14.20)

where c combines f0 and all the other constant factors, and d�1/2 is the diagonal
matrix whose entries are one over the square roots of the eigenvalues of ⌃. The v(~x�
~µ) term takes the displacement of ~x from the mean, ~µ, and replaces the components
of that vector with its projection on to the eigenvectors. Multiplying by d�1/2 then
scales those projections, and so the radii have to be proportional to the square roots
of the eigenvalues.1

1If you know about principal components analysis and think that all this manipulation of eigenvectors
and eigenvalues of the covariance matrix seems familiar, you’re right; this was one of the ways in which
PCA was originally discovered. But PCA does not require any distributional assumptions. If you do not
know about PCA, wait for Chapter 17.
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271 14.2. MULTIVARIATE GAUSSIANS

14.2.2 Conditional Distributions and Least Squares

Suppose that ~X is bivariate, so p = 2, with mean vector ~mu = (µ1,µ2), and variance

matrix

⌃11 ⌃12
⌃21 ⌃22

�
. One can show (exercise!) that the conditional distribution of

X2 given X1 is Gaussian, and in fact

X2|X1 = x1 ⇠N (µ2+⌃21⌃
�1
11 (x1�µ1),⌃22�⌃21⌃

�1
11 ⌃12) (14.21)

To understand what is going on here, remember from Chapter 1 that the optimal
slope for linearly regressing X2 on X1 would be Cov[X2,X1]/Var[X1]. This is pre-
cisely the same as ⌃21⌃�1

11 . So in the bivariate Gaussian case, the best linear regression
and the optimal regression are exactly the same — there is no need to consider non-
linear regressions. Moreover, we get the same conditional variance for each value of
x1, so the regression of X2 on X1 is homoskedastic, with independent Gaussian noise.
This is, in short, exactly the situation which all the standard regression formulas aim
at.

More generally, if X1,X2, . . .Xp are multivariate Gaussian, then conditioning on
X1, . . .Xq gives the remaining variables Xq+1, . . .Xp a Gaussian distribution as well.

If we say that ~µ = (~µA, ~µB ) and ⌃ =

⌃AA ⌃AB
⌃BA ⌃BB

�
, where A stands for the condi-

tioning variables and B for the conditioned, then

~XB |~XA= ~xa ⇠MVN (~µB +⌃BA⌃
�1
AA(~xA� ~µA),⌃BB �⌃BA⌃

�1
AA⌃AB ) (14.22)

(Remember that here ⌃BA=⌃T
AB [Why?].) This, too, is just doing a linear regression

of ~XB on ~XA.

14.2.3 Projections of Multivariate Gaussians
A useful fact about multivariate Gaussians is that all their univariate projections are
also Gaussian. That is, if ~X ⇠MVN (~µ,⌃), and we fix any unit vector ~w, then ~w · ~X
has a Gaussian distribution. This is easy to see if ⌃ is diagonal: then ~w · ~X reduces
to a sum of independent Gaussians, which we know from basic probability is also
Gaussian. But we can use the eigen-decomposition of ⌃ to check that this holds more
generally.

One can also show that the converse is true: if ~w · ~X is a univariate Gaussian for
every choice of ~w, then ~X must be multivariate Gaussian. This fact is more useful for
probability theory than for data analysis2, but it’s still worth knowing.

14.2.4 Computing with Multivariate Gaussians
Computationally, it is not hard to write functions to calculate the multivariate Gaus-
sian density, or to generate multivariate Gaussian random vectors. Unfortunately,

2It’s a special case of a result called the Cramér-Wold theorem, or the Cramér-Wold device, which
asserts that two random vectors ~X and ~Y have the same distribution if and only if ~w · ~X and ~w · ~Y have
the same distribution for every ~w.
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14.3. INFERENCE WITH MULTIVARIATE DISTRIBUTIONS 272

no one seems to have thought to put a standard set of such functions in the basic
set of R packages, so you have to use a different library. The MASS library con-
tains a function, mvrnorm, for generating multivariate Gaussian random vectors. The
mvtnorm contains functions for calculating the density, cumulative distribution and
quantiles of the multivariate Gaussian, as well as generating random vectors3 The
package mixtools, which will use in Chapter 19 for mixture models, includes func-
tions for the multivariate Gaussian density and for random-vector generation.

14.3 Inference with Multivariate Distributions
As with univariate distributions, there are several ways of doing statistical inference
for multivariate distributions. Here I will focus on parametric inference, since non-
parametric inference is covered in Chapter 15.

14.3.1 Estimation
The oldest method of estimating parametric distributions is moment-matching or
the method of moments. If there are q unknown parameters of the distribution,
one picks q expectation values — means, variances, and covariances are popular —
and finds algebraic expressions for them in terms of the parameters. One then sets
these equal to the sample moments, and solves for the corresponding parameters.
This method can fail if you happen to chose algebraically redundant moments, since
then you really have fewer equations than unknowns4. Perhaps more importantly, it
quickly becomes very awkward to set up and solve all the necessary equations, and
anyway this neglects a lot of information the data.

The approach which has generally replaced the method of moments is simply the
method of maximum likelihood. The likelihood is defined in exactly the same way for
multivariate distributions as for univariate ones. If the observations ~xi are assumed
to be independent, and ✓ stands for all the parameters bundled together, then

L(✓) =
nY

i=1
p(~xi ;✓) (14.23)

and the maximum likelihood estimate (MLE) is

b✓M LE = argmax
✓

L(✓) (14.24)

Again, as in the univariate case, it is usually simpler and more stable to use the log-
likelihood:

`(✓) =
nX

i=1
log p(~xi ;✓) (14.25)

3It also has such functions for multivariate t distributions, which are to multivariate Gaussians exactly
as ordinary t distributions are to univariate Gaussians.

4For instance, you can’t use variances, covariances and correlations, since knowing variances and co-
variances fixes the correlations.
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273 14.3. INFERENCE WITH MULTIVARIATE DISTRIBUTIONS

making use of the fact that

argmax
✓

L(✓) = argmax
✓

`(✓) (14.26)

The simplest possible case for this is the multivariate Gaussian, where the MLE
is the sample mean vector and the sample covariance matrix. Generally, however, the
maximum likelihood estimate and the moment-matching estimate will not coincide.

Of course, for inference, we generally need more than just a point estimate like
b✓M LE , we need some idea of uncertainty. We can get that pretty generically from
maximum likelihood. Very informally, since we are maximizing the log-likelihood,
the precision with which we estimate the parameter depends on how sharp that max-
imum is — the bigger the second derivative, the more precise our estimate. In fact,
one can show (Wasserman, 2003, §9.7 and 9.10) that

b✓M LE †MVN (✓0,�H�1(✓0)) (14.27)

where ✓0 is the true parameter value, and H is the Hessian of the log-likelihood, its
matrix of second partial derivatives,

Hj k (✓) =
@ 2`

@ ✓ j@ ✓k

�����
✓

(14.28)

In turn,
1
n

Hj k (✓0)! E

2
4@

2 log p(X ;✓0)
@ ✓ j@ ✓k

3
5⌘�I j k (✓0) (14.29)

which defines the Fisher information matrix I. One can therefore get (approximate)
confidence regions by assuming that b✓M LE has a Gaussian distribution with covari-
ance matrix n�1I�1(b✓M LE ), or, somewhat more accurately, �H�1(b✓M LE ). We thus
get that Var
hb✓M LE

i
=O(n�1), and b✓M LE �✓0 =O(n�1/2).

Note that Eq. 14.27 is only valid as n!1, and further assumes that (i) the model
is well-specified, (ii) the true parameter value ✓0 is in the interior of the parameter
space, and (iii) the Hessian matrix is strictly positive. If these conditions fail, then the
distribution of the MLE need not be Gaussian, or controlled by the Fisher informa-
tion matrix, etc.

An alternative to the asymptotic formula, Eq. 14.27, is simply parametric or non-
parametric bootstrapping.

14.3.2 Model Comparison
Out of sample, models can be compared on log-likelihood. When a strict out-of-
sample comparison is not possible, we can use cross-validation.

In sample, a likelihood ratio test can be used. This has two forms, depending on
the relationship between the models. Suppose that there is a large or wide model,
with parameter ⇥, and a narrow or small model, with parameter ✓, which we get
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14.3. INFERENCE WITH MULTIVARIATE DISTRIBUTIONS 274

by fixing some of the components of ⇥. Thus the dimension of ⇥ is q and that of
✓ is r < q . Since every distribution we can get from the narrow model we can also
get from the wide model, in-sample the likelihood of the wide model must always be
larger. Thus

`(b⇥)� `(b✓)� 0 (14.30)

Here we have a clear null hypothesis, which is that the data comes from the narrower,
smaller model. Under this null hypothesis, as n!1,

2[`(b⇥)� `(b✓)]† � 2
q�r (14.31)

provided that the restriction imposed by the small model doesn’t place it on the
boundary of the parameter space of ⇥. (See Appendix C.)

For instance, suppose that ~X is bivariate, and the larger model is an unrestricted

Gaussian, so ⇥ =
⇢
(µ1,µ2),

⌃11 ⌃12
⌃12 ⌃22

��
. A possible narrow model might im-

pose the assumption that the components of ~X are uncorrelated, so ✓=
⇢
(µ1,µ2),

⌃11 0
0 ⌃22

��
.

This is a restriction on the broader model, but not one which is on the boundary of
the parameter space, so the large-sample � 2 distribution should apply. A restriction
which would be on the boundary would be to insist that X2 was constant, so ⌃22 = 0.
(This would also force ⌃12 = 0.)

If, on the other hand, that we have two models, with parameters ✓ and  , and
they are completely non-nested, meaning there are no parameter combinations where

p(·;✓) = p(·; ) (14.32)

then in many ways things become easier. For fixed parameter values ✓0,  0, the mean
log-likelihood ratio is just an average of IID terms:

1
n
[`(✓0)� `( 0)] ⌘

1
n

nX
i=1
⇤i (14.33)

=
1
n

nX
i=1

log
p(xi ;✓0)
p(xi ; 0)

(14.34)

By the law of large numbers, then, the mean log-likelihood ratio converges to an
expected value E[⇤]. This is positive if ✓0 has a higher expected log-likelihood than
 0, and negative the other way around. Furthermore, by the central limit theorem,
as n grows, the fluctuations around this expected value are Gaussian, with variance
�2
⇤/n. We can estimate �2

⇤ by the sample variance of log p(xi ;✓0)
p(xi ; 0)

.
Ordinarily, we don’t have just a single parameter value for each model, but also

ordinarily, b✓M LE and b M LE both converge to limits, which we can call ✓0 and p s i0.
At the cost of some fancy probability theory, one can show that, in the non-nested
case, p

n
n
`(b✓)� `( b )

�2
⇤

†N (E[⇤] , 1) (14.35)
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and that we can consistently estimate E[⇤] and �2
⇤ by “plugging in” b✓ and b in place

of ✓0 and 0. This gives the Vuong test for comparing the two models Vuong (1989).
The null hypothesis in the Vuong test is that the two models are equally good (and
neither is exactly true). In this case,

V =
1
p

n

`(b✓)� `( b )
b�⇤

†N (0,1) (14.36)

If V is significantly positive, we have evidence in favor of the ✓ model being better
(though not necessarily true), while if it is significantly negative we have evidence in
favor of the  model being better.

The cases where two models partially overlap is complicated; see Vuong (1989)
for the gory details5

14.3.3 Goodness-of-Fit
For univariate distributions, we often assess goodness-of-fit through the Kolmogorov-
Smirnov (KS) test6, where the test statistic is

dK S =max
a
|bFn(a)� F (a)| (14.37)

with bFn being the empirical CDF, and F its theoretical counterpart. The null hy-
pothesis here is that the data were drawn IID from F , and what Kolmogorov and
Smirnov did was to work out the distribution of dK S under this null hypothesis, and
show it was the same for all F (at least for large n). This lets us actually calculate p
values.

We could use such a test statistic for multivariate data, where we’d just take the
maximum over vectors a, rather than scalars. But the problem is that we do not know
its sampling distribution under the null hypothesis in the multivariate case — Kol-
mogorov and Smirnov’s arguments don’t work there — so we don’t know whether a
given value of dK S is large or small or what.

There is however a fairly simple approximate way of turning univariate tests into
multivariate ones. Suppose our data consists of vectors ~x1,~x2, . . .~xn . Pick a unit vector
~w, and set zi = ~w ·~xi . Geometrically, this is just the projection of the data along the
direction ~w, but these projections are univariate random variables. If the ~xi were
drawn from F , then the zi must have be drawn from the corresponding projection
of F , call it F ~w . If we can work out the latter distribution, then we can apply our
favorite univariate test to the zi . If the fit is bad, then we know that the ~xi can’t have
come from F . If the fit is good for the zi , then the fit is also good for the ~xi — at least

5If you are curious about why this central-limit-theorem argument doesn’t work in the nested case,
notice that when we have nested models, and the null hypothesis is true, then b⇥! b✓, so the numerator in
the Vuong test statistic, [`(b✓)�`( b )]/n, is converging to zero, but so is the denominator �2

⇤. Since 0/0 is
undefined, we need to use a stochastic version of L’Hoptial’s rule, which gives us back Eq. 14.31. See, yet
again, Vuong (1989).

6I discuss the KS test here for concreteness. Much the same ideas apply to the Anderson-Darling test,
the Cramér-von Mises test, and others which, not being such good ideas, were only invented by one person.
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along the direction ~w. Now, we can either carefully pick ~w to be a direction which
we care about for some reason, or we can chose it randomly. If the projection of the
~xi along several random directions matches that of F , it becomes rather unlikely that
they fail to match over-all7.

To summarize:

1. Chose a random unit vector ~W . (For instance, let ~U ⇠ MVN (0, Ip ), and
~W = ~U/k ~Uk.)

2. Calculate Zi = ~W ·~xi .

3. Calculate the corresponding projection of the theoretical distribution F , call it
F ~W .

4. Apply your favorite univariate goodness-of-fit test to ~Zi and F ~W .

5. Repeat (1)–(4) multiple times, with Bonferroni correction for multiple testing.

14.4 Exercises
To think through, not to hand in.

1. Write a function to calculate the density of a multivariate Gaussian with a given
mean vector and covariance matrix. Check it against an existing function from
one of the packages mentioned in §14.2.4.

2. Write a function to generate multivariate Gaussian random vectors, using rnorm.

3. If ~X has mean ~µ and variance-covariance matrix ⌃, and ~w is a fixed, non-
random vector, find the mean and variance of w ·X .

4. If ~X ⇠ MVN (~µ,⌃), and b and c are two non-random matrices, find the
covariance matrix of b~X and c~X .

7Theoretically, we appeal to the Cramér-Wold device again: the random vectors ~X and ~Y have the same
distribution if and only if ~w · ~X and ~w · ~Y have the same distribution for every ~w. Failing to match for any
~w implies that ~X and ~Y have different distributions. Conversely, if ~X and ~Y differ in distribution at all,
~w · ~X must differ in distribution from ~w · ~Y for some choice of ~w. Randomizing the choice of ~w gives us
power to detect a lot of differences in distribution.
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