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Chapter 19

Mixture Models

19.1 Two Routes to Mixture Models

19.1.1 From Factor Analysis to Mixture Models
In factor analysis, the origin myth is that we have a fairly small number, q of real
variables which happen to be unobserved (“latent”), and the much larger number p
of variables we do observe arise as linear combinations of these factors, plus noise.
The mythology is that it’s possible for us (or for Someone) to continuously adjust the
latent variables, and the distribution of observables likewise changes continuously.
What if the latent variables are not continuous but ordinal, or even categorical? The
natural idea would be that each value of the latent variable would give a different
distribution of the observables.

19.1.2 From Kernel Density Estimates to Mixture Models
We have also previously looked at kernel density estimation, where we approximate
the true distribution by sticking a small ( 1

n weight) copy of a kernel pdf at each ob-
served data point and adding them up. With enough data, this comes arbitrarily
close to any (reasonable) probability density, but it does have some drawbacks. Sta-
tistically, it labors under the curse of dimensionality. Computationally, we have to
remember all of the data points, which is a lot. We saw similar problems when we
looked at fully non-parametric regression, and then saw that both could be amelio-
rated by using things like additive models, which impose more constraints than, say,
unrestricted kernel smoothing. Can we do something like that with density estima-
tion?

Additive modeling for densities is not as common as it is for regression — it’s
harder to think of times when it would be natural and well-defined1 — but we can

1Remember that the integral of a probability density over all space must be 1, while the integral of a re-
gression function doesn’t have to be anything in particular. If we had an additive density, f (x) =

P
j f j (xj ),

ensuring normalization is going to be very tricky; we’d need
P

j
R

f j (xj )d x1d x2d xp = 1. It would be
easier to ensure normalization while making the log-density additive, but that assumes the features are
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369 19.1. TWO ROUTES TO MIXTURE MODELS

do things to restrict density estimation. For instance, instead of putting a copy of
the kernel at every point, we might pick a small number K ⌧ n of points, which we
feel are somehow typical or representative of the data, and put a copy of the kernel at
each one (with weight 1

K ). This uses less memory, but it ignores the other data points,
and lots of them are probably very similar to those points we’re taking as prototypes.
The differences between prototypes and many of their neighbors are just matters of
chance or noise. Rather than remembering all of those noisy details, why not collapse
those data points, and just remember their common distribution? Different regions
of the data space will have different shared distributions, but we can just combine
them.

19.1.3 Mixture Models
More formally, we say that a distribution f is a mixture of K component distribu-
tions f1, f2, . . . fK if

f (x) =
KX

k=1

�k fk (x) (19.1)

with the �k being the mixing weights, �k > 0,
P

k �k = 1. Eq. 19.1 is a complete
stochastic model, so it gives us a recipe for generating new data points: first pick a
distribution, with probabilities given by the mixing weights, and then generate one
observation according to that distribution. Symbolically,

Z ⇠ Mult(�1,�2, . . .�K ) (19.2)
X |Z ⇠ fZ (19.3)

where I’ve introduced the discrete random variable Z which says which component
X is drawn from.

I haven’t said what kind of distribution the fks are. In principle, we could make
these completely arbitrary, and we’d still have a perfectly good mixture model. In
practice, a lot of effort is given over to parametric mixture models, where the fk
are all from the same parametric family, but with different parameters — for instance
they might all be Gaussians with different centers and variances, or all Poisson dis-
tributions with different means, or all power laws with different exponents. (It’s not
necessary, just customary, that they all be of the same kind.) We’ll write the parame-
ter, or parameter vector, of the k th component as ✓k , so the model becomes

f (x) =
KX

k=1

�k f (x;✓k ) (19.4)

The over-all parameter vector of the mixture model is thus ✓= (�1,�2, . . .�K ,✓1,✓2, . . .✓K ).
Let’s consider two extremes. When K = 1, we have a simple parametric distribu-

tion, of the usual sort, and density estimation reduces to estimating the parameters,
by maximum likelihood or whatever else we feel like. On the other hand when

independent of each other.
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19.1. TWO ROUTES TO MIXTURE MODELS 370

K = n, the number of observations, we have gone back towards kernel density es-
timation. If K is fixed as n grows, we still have a parametric model, and avoid the
curse of dimensionality, but a mixture of (say) ten Gaussians is more flexible than a
single Gaussian — thought it may still be the case that the true distribution just can’t
be written as a ten-Gaussian mixture. So we have our usual bias-variance or accuracy-
precision trade-off — using many components in the mixture lets us fit many distri-
butions very accurately, with low approximation error or bias, but means we have
more parameters and so we can’t fit any one of them as precisely, and there’s more
variance in our estimates.

19.1.4 Geometry
In Chapter 17, we looked at principal components analysis, which finds linear struc-
tures with q space (lines, planes, hyper-planes, . . . ) which are good approximations
to our p-dimensional data, q ⌧ p. In Chapter 18, we looked at factor analysis,
where which imposes a statistical model for the distribution of the data around this
q -dimensional plane (Gaussian noise), and a statistical model of the distribution of
representative points on the plane (also Gaussian). This set-up is implied by the
mythology of linear continuous latent variables, but can arise in other ways.

Now, we know from geometry that it takes q+1 points to define a q -dimensional
plane, and that in general any q + 1 points on the plane will do. This means that if
we use a mixture model with q + 1 components, we will also get data which clusters
around a q -dimensional plane. Furthermore, by adjusting the mean of each compo-
nent, and their relative weights, we can make the global mean of the mixture what-
ever we like. And we can even match the covariance matrix of any q -factor model by
using a mixture with q + 1 components2. Now, this mixture distribution will hardly
ever be exactly the same as the factor model’s distribution — mixtures of Gaussians
aren’t Gaussian, the mixture will usually (but not always) be multimodal while the
factor distribution is always unimodal — but it will have the same geometry, the
same mean and the same covariances, so we will have to look beyond those to tell
them apart. Which, frankly, people hardly ever do.

19.1.5 Identifiability
Before we set about trying to estimate our probability models, we need to make sure
that they are identifiable — that if we have distinct representations of the model, they
make distinct observational claims. It is easy to let there be too many parameters, or
the wrong choice of parameters, and lose identifiability. If there are distinct repre-
sentations which are observationally equivalent, we either need to change our model,
change our representation, or fix on a unique representation by some convention.

• With additive regression, E[Y |X = x] = ↵+
P

j f j (xj ), we can add arbitrary
constants so long as they cancel out. That is, we get the same predictions from
↵+ c0+
P

j f j (xj )+ c j when c0 =�
P

j c j . This is another model of the same
form, ↵0 +
P

j f 0j (xj ), so it’s not identifiable. We dealt with this by imposing

2See Bartholomew (1987, pp. 36–38). The proof is tedious algebraically.
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371 19.1. TWO ROUTES TO MIXTURE MODELS

the convention that ↵ = E[Y ] and E
î

f j (Xj )
ó
= 0 — we picked out a favorite,

convenient representation from the infinite collection of equivalent represen-
tations.

• Linear regression becomes unidentifiable with collinear features. Collinearity
is a good reason to not use linear regression (i.e., we change the model.)

• Factor analysis is unidentifiable because of the rotation problem. Some people
respond by trying to fix on a particular representation, others just ignore it.

Two kinds of identification problems are common for mixture models; one is
trivial and the other is fundamental. The trivial one is that we can always swap the
labels of any two components with no effect on anything observable at all — if we
decide that component number 1 is now component number 7 and vice versa, that
doesn’t change the distribution of X at all. This label degeneracy can be annoying,
especially for some estimation algorithms, but that’s the worst of it.

A more fundamental lack of identifiability happens when mixing two distribu-
tions from a parametric family just gives us a third distribution from the same family.
For example, suppose we have a single binary feature, say an indicator for whether
someone will pay back a credit card. We might think there are two kinds of cus-
tomers, with high- and low- risk of not paying, and try to represent this as a mixture
of Bernoulli distribution. If we try this, we’ll see that we’ve gotten a single Bernoulli
distribution with an intermediate risk of repayment. A mixture of Bernoulli is al-
ways just another Bernoulli. More generally, a mixture of discrete distributions over
any finite number of categories is just another distribution over those categories3

19.1.6 Probabilistic Clustering

Yet another way to view mixture models, which I hinted at when I talked about how
they are a way of putting similar data points together into “clusters”, where clusters
are represented by, precisely, the component distributions. The idea is that all data
points of the same type, belonging to the same cluster, are more or less equivalent and
all come from the same distribution, and any differences between them are matters
of chance. This view exactly corresponds to mixture models like Eq. 19.1; the hidden
variable Z I introduced above in just the cluster label.

One of the very nice things about probabilistic clustering is that Eq. 19.1 actually
claims something about what the data looks like; it says that it follows a certain dis-
tribution. We can check whether it does, and we can check whether new data follows
this distribution. If it does, great; if not, if the predictions systematically fail, then

3That is, a mixture of any two n = 1 multinomials is another n = 1 multinomial. This is not generally
true when n > 1; for instance, a mixture of a Binom(2,0.75) and a Binom(2,0.25) is not a Binom(2, p)
for any p. (EXERCISE: show this.) However, both of those binomials is a distribution on {0,1,2}, and
so is their mixture. This apparently trivial point actually leads into very deep topics, since it turns out
that which models can be written as mixtures of others is strongly related to what properties of the data-
generating process can actually be learned from data: see Lauritzen (1984). (Thanks to Bob Carpenter for
pointing out an error in an earlier draft.)
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19.2. ESTIMATING PARAMETRIC MIXTURE MODELS 372

the model is wrong. We can compare different probabilistic clusterings by how well
they predict (say under cross-validation).4

In particular, probabilistic clustering gives us a sensible way of answering the
question “how many clusters?” The best number of clusters to use is the number
which will best generalize to future data. If we don’t want to wait around to get new
data, we can approximate generalization performance by cross-validation, or by any
other adaptive model selection procedure.

19.1.7 Simulation

Simulating from a mixture model works rather like simulating from a kernel density
estimate. To draw a new value X̃ , first draw a random integer Z from 1 to k, with
probabilities �k , then draw from the Z th mixture component. (That is, X̃ |Z ⇠ fZ .)
Note that if we want multiple draws, X̃1, X̃2, . . . X̃b , each of them needs an indepen-
dent Z ,

19.2 Estimating Parametric Mixture Models

From intro stats., we remember that it’s generally a good idea to estimate distribu-
tions using maximum likelihood, when we can. How could we do that here?

Remember that the likelihood is the probability (or probability density) of ob-
serving our data, as a function of the parameters. Assuming independent samples,
that would be

nY
i=1

f (xi ;✓) (19.5)

for observations x1, x2, . . . xn . As always, we’ll use the logarithm to turn multiplica-
tion into addition:

`(✓) =
nX

i=1
log f (xi ;✓) (19.6)

=
nX

i=1
log

KX
k=1

�k f (xi ;✓k ) (19.7)

4Contrast this with k-means or hierarchical clustering, which you may have seen in other classes: they
make no predictions, and so we have no way of telling if they are right or wrong. Consequently, comparing
different non-probabilistic clusterings is a lot harder!
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373 19.2. ESTIMATING PARAMETRIC MIXTURE MODELS

Let’s try taking the derivative of this with respect to one parameter, say ✓ j .

@ `

@ ✓ j
=

nX
i=1

1
PK

k=1 �k f (xi ;✓k )
� j

@ f (xi ;✓ j )

@ ✓ j
(19.8)

=
nX

i=1

� j f (xi ;✓ j )PK
k=1 �k f (xi ;✓k )

1
f (xi ;✓ j )

@ f (xi ;✓ j )

@ ✓ j
(19.9)

=
nX

i=1

� j f (xi ;✓ j )PK
k=1 �k f (xi ;✓k )

@ log f (xi ;✓ j )

@ ✓ j
(19.10)

If we just had an ordinary parametric model, on the other hand, the derivative of the
log-likelihood would be

nX
i=1

@ log f (xi ;✓ j )

@ ✓ j
(19.11)

So maximizing the likelihood for a mixture model is like doing a weighted likelihood
maximization, where the weight of xi depends on cluster, being

wi j =
� j f (xi ;✓ j )PK

k=1 �k f (xi ;✓k )
(19.12)

The problem is that these weights depend on the parameters we are trying to esti-
mate!

Let’s look at these weights wi j a bit more. Remember that � j is the probability
that the hidden class variable Z is j , so the numerator in the weights is the joint prob-
ability of getting Z = j and X = xi . The denominator is the marginal probability of
getting X = xi , so the ratio is the conditional probability of Z = j given X = xi ,

wi j =
� j f (xi ;✓ j )PK

k=1 �k f (xi ;✓k )
= p(Z = j |X = xi ;✓) (19.13)

If we try to estimate the mixture model, then, we’re doing weighted maximum like-
lihood, with weights given by the posterior cluster probabilities. These, to repeat,
depend on the parameters we are trying to estimate, so there seems to be a vicious
circle.

But, as the saying goes, one man’s vicious circle is another man’s successive ap-
proximation procedure. A crude way of doing this5 would start with an initial guess
about the component distributions; find out which component each point is most
likely to have come from; re-estimate the components using only the points assigned
to it, etc., until things converge. This corresponds to taking all the weights wi j to be
either 0 or 1. However, it does not maximize the likelihood, since we’ve seen that to
do so we need fractional weights.

What’s called the EM algorithm is simply the obvious refinement of this “hard”
assignment strategy.

5Related to what’s called “k-means” clustering.
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19.2. ESTIMATING PARAMETRIC MIXTURE MODELS 374

1. Start with guesses about the mixture components ✓1,✓2, . . .✓K and the mixing
weights �1, . . .�K .

2. Until nothing changes very much:

(a) Using the current parameter guesses, calculate the weights wi j (E-step)

(b) Using the current weights, maximize the weighted likelihood to get new
parameter estimates (M-step)

3. Return the final parameter estimates (including mixing proportions) and clus-
ter probabilities

The M in “M-step” and “EM” stands for “maximization”, which is pretty trans-
parent. The E stands for “expectation”, because it gives us the conditional probabili-
ties of different values of Z , and probabilities are expectations of indicator functions.
(In fact in some early applications, Z was binary, so one really was computing the
expectation of Z .) The whole thing is also called the “expectation-maximization”
algorithm.

19.2.1 More about the EM Algorithm
The EM algorithm turns out to be a general way of maximizing the likelihood when
some variables are unobserved, and hence useful for other things besides mixture
models. So in this section, where I try to explain why it works, I am going to be a
bit more general abstract. (Also, it will actually cut down on notation.) I’ll pack the
whole sequence of observations x1, x2, . . . xn into a single variable d (for “data”), and
likewise the whole sequence of z1, z2, . . . zn into h (for “hidden”). What we want to
do is maximize

`(✓) = log p(d ;✓) = log
X

h

p(d , h;✓) (19.14)

This is generally hard, because even if p(d , h;✓) has a nice parametric form, that is
lost when we sum up over all possible values of h (as we saw above). The essential
trick of the EM algorithm is to maximize not the log likelihood, but a lower bound
on the log-likelihood, which is more tractable; we’ll see that this lower bound is
sometimes tight, i.e., coincides with the actual log-likelihood, and in particular does
so at the global optimum.

We can introduce an arbitrary6 distribution on h, call it q(h), and we’ll

`(✓) = log
X

h

p(d , h;✓) (19.15)

= log
X

h

q(h)
q(h)

p(d , h;✓) (19.16)

= log
X

h

q(h)
p(d , h;✓)

q(h)
(19.17)

6Well, almost arbitrary; it shouldn’t give probability zero to value of h which has positive probability
for all ✓.
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Figure 19.1: The logarithm is a concave function, i.e., the curve connecting any two
points lies above the straight line doing so. Thus the average of logarithms is less than
the logarithm of the average.

So far so trivial.
Now we need a geometric fact about the logarithm function, which is that its

curve is concave: if we take any two points on the curve and connect them by a
straight line, the curve lies above the line (Figure 19.1). Algebraically, this means that

w log t1+ (1�w) log t2  log w t1+ (1�w)t2 (19.18)

for any 0  w  1, and any points t1, t2 > 0. Nor does this just hold for two points:
for any r points t1, t2, . . . tr > 0, and any set of non-negative weights

Pr
i=1 wr = 1,

rX
i=1

wi log ti  log
rX

i=1
wi ti (19.19)

In words: the log of the average is at least the average of the logs. This is called
Jensen’s inequality. So

log
X

h

q(h)
p(d , h;✓)

q(h)
�
X

h

q(h) log
p(d , h;✓)

q(h)
(19.20)

⌘ J (q ,✓) (19.21)

We are bothering with this because we hope that it will be easier to maximize
this lower bound on the likelihood than the actual likelihood, and the lower bound
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19.2. ESTIMATING PARAMETRIC MIXTURE MODELS 376

is reasonably tight. As to tightness, suppose that q(h) = p(h|d ;✓). Then

p(d , h;✓)
q(h)

=
p(d , h;✓)
p(h|d ;✓)

=
p(d , h;✓)

p(h, d ;✓)/p(d ;✓)
= p(d ;✓) (19.22)

no matter what h is. So with that choice of q , J (q ,✓) = `(✓) and the lower bound is
tight. Also, since J (q ,✓) `(✓), this choice of q maximizes J for fixed ✓.

Here’s how the EM algorithm goes in this formulation.

1. Start with an initial guess ✓(0) about the components and mixing weights.

2. Until nothing changes very much

(a) E-step: q (t ) = argmaxq J (q ,✓(t ))

(b) M-step: ✓(t+1) = argmax✓ J (q (t ),✓)

3. Return final estimates of ✓ and q

The E and M steps are now nice and symmetric; both are about maximizing J . It’s
easy to see that, after the E step,

J (q (t ),✓(t ))� J (q (t�1),✓(t )) (19.23)

and that, after the M step,

J (q (t ),✓(t+1))� J (q (t ),✓(t )) (19.24)

Putting these two inequalities together,

J (q (t+1),✓(t+1)) � J (q (t ),✓(t )) (19.25)

`(✓(t+1)) � `(✓(t )) (19.26)

So each EM iteration can only improve the likelihood, guaranteeing convergence to
a local maximum. Since it only guarantees a local maximum, it’s a good idea to try a
few different initial values of ✓(0) and take the best.

We saw above that the maximization in the E step is just computing the posterior
probability p(h|d ;✓). What about the maximization in the M step?

X
h

q(h) log
p(d , h;✓)

q(h)
=
X

h

q(h) log p(d , h;✓)�
X

h

q(h) log q(h) (19.27)

The second sum doesn’t depend on ✓ at all, so it’s irrelevant for maximizing, giving
us back the optimization problem from the last section. This confirms that using the
lower bound from Jensen’s inequality hasn’t yielded a different algorithm!
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377 19.3. NON-PARAMETRIC MIXTURE MODELING

19.2.2 Further Reading on and Applications of EM
My presentation of the EM algorithm draws heavily on Neal and Hinton (1998).

Because it’s so general, the EM algorithm is applied to lots of problems with
missing data or latent variables. Traditional estimation methods for factor analy-
sis, for example, can be replaced with EM. (Arguably, some of the older methods
were versions of EM.) A common problem in time-series analysis and signal process-
ing is that of “filtering” or “state estimation”: there’s an unknown signal St , which
we want to know, but all we get to observe is some noisy, corrupted measurement,
Xt = h(St ) + ⌘t . (A historically important example of a “state” to be estimated from
noisy measurements is “Where is our rocket and which way is it headed?” — see
McGee and Schmidt, 1985.) This is solved by the EM algorithm, with the signal as
the hidden variable; Fraser (2008) gives a really good introduction to such models and
how they use EM.

Instead of just doing mixtures of densities, one can also do mixtures of predictive
models, say mixtures of regressions, or mixtures of classifiers. The hidden variable
Z here controls which regression function to use. A general form of this is what’s
known as a mixture-of-experts model (Jordan and Jacobs, 1994; Jacobs, 1997) — each
predictive model is an “expert”, and there can be a quite complicated set of hidden
variables determining which expert to use when.

The EM algorithm is so useful and general that it has in fact been re-invented mul-
tiple times. The name “EM algorithm” comes from the statistics of mixture models
in the late 1970s; in the time series literature it’s been known since the 1960s as the
“Baum-Welch” algorithm.

19.2.3 Topic Models and Probabilistic LSA
Mixture models over words provide an alternative to latent semantic indexing for
document analysis. Instead of finding the principal components of the bag-of-words
vectors, the idea is as follows. There are a certain number of topics which documents
in the corpus can be about; each topic corresponds to a distribution over words. The
distribution of words in a document is a mixture of the topic distributions. That is,
one can generate a bag of words by first picking a topic according to a multinomial
distribution (topic i occurs with probability �i ), and then picking a word from that
topic’s distribution. The distribution of topics varies from document to document,
and this is what’s used, rather than projections on to the principal components, to
summarize the document. This idea was, so far as I can tell, introduced by Hofmann
(1999), who estimated everything by EM. Latent Dirichlet allocation, due to Blei
and collaborators (Blei et al., 2003) is an important variation which smoothes the
topic distributions; there is a CRAN package called lda. Blei and Lafferty (2009) is a
good recent review paper of the area.

19.3 Non-parametric Mixture Modeling
We could replace the M step of EM by some other way of estimating the distribution
of each mixture component. This could be a fast-but-crude estimate of parameters
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19.4. WORKED COMPUTATING EXAMPLE 378

(say a method-of-moments estimator if that’s simpler than the MLE), or it could even
be a non-parametric density estimator of the type we talked about in Chapter 15.
(Similarly for mixtures of regressions, etc.) Issues of dimensionality re-surface now,
as well as convergence: because we’re not, in general, increasing J at each step, it’s
harder to be sure that the algorithm will in fact converge. This is an active area of
research.

19.4 Worked Computing Example: Snoqualmie Falls
Revisited

19.4.1 Mixture Models in R
There are several R packages which implement mixture models. The mclust package
(http://www.stat.washington.edu/mclust/) is pretty much standard for Gaus-
sian mixtures. One of the most recent and powerful is mixtools (Benaglia et al.,
2009), which, in addition to classic mixtures of parametric densities, handles mix-
tures of regressions and some kinds of non-parametric mixtures. The FlexMix pack-
age (Leisch, 2004) is (as the name implies) very good at flexibly handling complicated
situations, though you have to do some programming to take advantage of this.

19.4.2 Fitting a Mixture of Gaussians to Real Data
Let’s go back to the Snoqualmie Falls data set, last used in §13.3. There we built a
system to forecast whether there would be precipitation on day t , on the basis of
how much precipitation there was on day t � 1. Let’s look at the distribution of the
amount of precipitation on the wet days.

snoqualmie <- read.csv("snoqualmie.csv",header=FALSE)
snoqualmie.vector <- na.omit(unlist(snoqualmie))
snoq <- snoqualmie.vector[snoqualmie.vector > 0]

Figure 19.2 shows a histogram (with a fairly large number of bins), together with
a simple kernel density estimate. This suggests that the distribution is rather skewed
to the right, which is reinforced by the simple summary statistics

> summary(snoq)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 6.00 19.00 32.28 44.00 463.00

Notice that the mean is larger than the median, and that the distance from the first
quartile to the median is much smaller (13/100 of an inch of precipitation) than that
from the median to the third quartile (25/100 of an inch). One way this could arise,
of course, is if there are multiple types of wet days, each with a different characteristic
distribution of precipitation.

We’ll look at this by trying to fit Gaussian mixture models with varying numbers
of components. We’ll start by using a mixture of two Gaussians. We could code up
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Precipitation in Snoqualmie Falls

Precipitation (1/100 inch)
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plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq),lty=2)

Figure 19.2: Histogram (grey) for precipitation on wet days in Snoqualmie Falls. The
dashed line is a kernel density estimate, which is not completely satisfactory. (It gives
non-trivial probability to negative precipitation, for instance.)
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19.4. WORKED COMPUTATING EXAMPLE 380

the EM algorithm for fitting this mixture model from scratch, but instead we’ll use
the mixtools package.

library(mixtools)
snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)

The EM algorithm “runs until convergence”, i.e., until things change so little that
we don’t care any more. For the implementation in mixtools, this means running
until the log-likelihood changes by less than epsilon. The default tolerance for con-
vergence is not 10�2, as here, but 10�8, which can take a very long time indeed. The
algorithm also stops if we go over a maximum number of iterations, even if it has
not converged, which by default is 1000; here I have dialed it down to 100 for safety’s
sake. What happens?

> snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)
number of iterations= 59
> summary(snoq.k2)
summary of normalmixEM object:

comp 1 comp 2
lambda 0.557564 0.442436
mu 10.267390 60.012594
sigma 8.511383 44.998102
loglik at estimate: -32681.21

There are two components, with weights (lambda) of about 0.56 and 0.44, two means
(mu) and two standard deviations (sigma). The over-all log-likelihood, obtained after
59 iterations, is �32681.21. (Demanding convergence to ±10�8 would thus have re-
quired the log-likelihood to change by less than one part in a trillion, which is quite
excessive when we only have 6920 observations.)

We can plot this along with the histogram of the data and the non-parametric
density estimate. I’ll write a little function for it.

plot.normal.components <- function(mixture,component.number,...) {
curve(mixture$lambda[component.number] *

dnorm(x,mean=mixture$mu[component.number],
sd=mixture$sigma[component.number]), add=TRUE, ...)

}

This adds the density of a given component to the current plot, but scaled by the
share it has in the mixture, so that it is visually comparable to the over-all density.
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Precipitation in Snoqualmie Falls
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plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq),lty=2)
sapply(1:2,plot.normal.components,mixture=snoq.k2)

Figure 19.3: As in the previous figure, plus the components of a mixture of two
Gaussians, fitted to the data by the EM algorithm (dashed lines). These are scaled by
the mixing weights of the components.
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19.4.3 Calibration-checking for the Mixture
Examining the two-component mixture, it does not look altogether satisfactory — it
seems to consistently give too much probability to days with about 1 inch of precip-
itation. Let’s think about how we could check things like this.

When we looked at logistic regression, we saw how to check probability forecasts
by checking calibration — events predicted to happen with probability p should in
fact happen with frequency ⇡ p. Here we don’t have a binary event, but we do
have lots of probabilities. In particular, we have a cumulative distribution function
F (x), which tells us the probability that the precipitation is  x on any given day.
When x is continuous and has a continuous distribution, F (x) should be uniformly
distributed.7 The CDF of a two-component mixture is

F (x) = �1F1(x)+�2F2(x) (19.28)

and similarly for more components. A little R experimentation gives a function for
computing the CDF of a Gaussian mixture:

pnormmix <- function(x,mixture) {
lambda <- mixture$lambda
k <- length(lambda)
pnorm.from.mix <- function(x,component) {

lambda[component]*pnorm(x,mean=mixture$mu[component],
sd=mixture$sigma[component])

}
pnorms <- sapply(1:k,pnorm.from.mix,x=x)
return(rowSums(pnorms))

}

and so produce a plot like Figure 19.4.3. We do not have the tools to assess whether
the size of the departure from the main diagonal is significant8, but the fact that the
errors are so very structured is rather suspicious.

7We saw this principle when we looked at generating random variables in Chapter 5.
8Though we could: the most straight-forward thing to do would be to simulate from the mixture, and

repeat this with simulation output.
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distinct.snoq <- sort(unique(snoq))
tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k2)
ecdfs <- ecdf(snoq)(distinct.snoq)
plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",xlim=c(0,1),

ylim=c(0,1))
abline(0,1)

Figure 19.4: Calibration plot for the two-component Gaussian mixture. For each
distinct value of precipitation x, we plot the fraction of days predicted by the mixture
model to have  x precipitation on the horizontal axis, versus the actual fraction of
days  x.
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19.4.4 Selecting the Number of Components by Cross-Validation
Since a two-component mixture seems iffy, we could consider using more compo-
nents. By going to three, four, etc. components, we improve our in-sample like-
lihood, but of course expose ourselves to the danger of over-fitting. Some sort of
model selection is called for. We could do cross-validation, or we could do hypothe-
sis testing. Let’s try cross-validation first.

We can already do fitting, but we need to calculate the log-likelihood on the held-
out data. As usual, let’s write a function; in fact, let’s write two.

dnormalmix <- function(x,mixture,log=FALSE) {
lambda <- mixture$lambda
k <- length(lambda)
# Calculate share of likelihood for all data for one component
like.component <- function(x,component) {

lambda[component]*dnorm(x,mean=mixture$mu[component],
sd=mixture$sigma[component])

}
# Create array with likelihood shares from all components over all data
likes <- sapply(1:k,like.component,x=x)
# Add up contributions from components
d <- rowSums(likes)
if (log) {

d <- log(d)
}
return(d)

}

loglike.normalmix <- function(x,mixture) {
loglike <- dnormalmix(x,mixture,log=TRUE)
return(sum(loglike))

}

To check that we haven’t made a big mistake in the coding:

> loglike.normalmix(snoq,mixture=snoq.k2)
[1] -32681.2

which matches the log-likelihood reported by summary(snoq.k2). But our function
can be used on different data!

We could do five-fold or ten-fold CV, but just to illustrate the approach we’ll do
simple data-set splitting, where a randomly-selected half of the data is used to fit the
model, and half to test.

n <- length(snoq)
data.points <- 1:n
data.points <- sample(data.points) # Permute randomly
train <- data.points[1:floor(n/2)] # First random half is training
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test <- data.points[-(1:floor(n/2))] # 2nd random half is testing
candidate.component.numbers <- 2:10
loglikes <- vector(length=1+length(candidate.component.numbers))
# k=1 needs special handling
mu<-mean(snoq[train]) # MLE of mean
sigma <- sd(snoq[train])*sqrt((n-1)/n) # MLE of standard deviation
loglikes[1] <- sum(dnorm(snoq[test],mu,sigma,log=TRUE))
for (k in candidate.component.numbers) {

mixture <- normalmixEM(snoq[train],k=k,maxit=400,epsilon=1e-2)
loglikes[k] <- loglike.normalmix(snoq[test],mixture=mixture)

}

When you run this, you will probably see a lot of warning messages saying “One
of the variances is going to zero; trying new starting values.” The issue is that we
can give any one value of x arbitrarily high likelihood by centering a Gaussian there
and letting its variance shrink towards zero. This is however generally considered
unhelpful — it leads towards the pathologies that keep us from doing pure maximum
likelihood estimation in non-parametric problems (Chapter 15) — so when that hap-
pens the code recognizes it and starts over.

If we look at the log-likelihoods, we see that there is a dramatic improvement
with the first few components, and then things slow down a lot9:

> loglikes
[1] -17656.86 -16427.83 -15808.77 -15588.44 -15446.77 -15386.74
[7] -15339.25 -15325.63 -15314.22 -15315.88

(See also Figure 19.5). This favors nine components to the mixture. It looks like
Figure 19.6. The calibration is now nearly perfect, at least on the training data (Figure
19.4.4).

9Notice that the numbers here are about half of the log-likelihood we calculated for the two-component
mixture on the complete data. This is as it should be, because log-likelihood is proportional to the number
of observations. (Why?) It’s more like the sum of squared errors than the mean squared error. If we want
something which is directly comparable across data sets of different size, we should use the log-likelihood
per observation.
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plot(x=1:10, y=loglikes,xlab="Number of mixture components",
ylab="Log-likelihood on testing data")

Figure 19.5: Log-likelihoods of different sizes of mixture models, fit to a random half
of the data for training, and evaluated on the other half of the data for testing.
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Precipitation in Snoqualmie Falls
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snoq.k9 <- normalmixEM(snoq,k=9,maxit=400,epsilon=1e-2)
plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,

xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")
lines(density(snoq),lty=2)
sapply(1:9,plot.normal.components,mixture=snoq.k9)

Figure 19.6: As in Figure 19.3, but using the nine-component Gaussian mixture.
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distinct.snoq <- sort(unique(snoq))
tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k9)
ecdfs <- ecdf(snoq)(distinct.snoq)
plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",xlim=c(0,1),

ylim=c(0,1))
abline(0,1)

Figure 19.7: Calibration plot for the nine-component Gaussian mixture.
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19.4.5 Interpreting the Mixture Components, or Not
The components of the mixture are far from arbitrary. It appears from Figure 19.6
that as the mean increases, so does the variance. This impression is confirmed from
Figure 19.8. Now it could be that there really are nine types of rainy days in Sno-
qualmie Falls which just so happen to have this pattern of distributions, but this
seems a bit suspicious — as though the mixture is trying to use Gaussians systemati-
cally to approximate a fundamentally different distribution, rather than get at some-
thing which really is composed of nine distinct Gaussians. This judgment relies on
our scientific understanding of the weather, which makes us surprised by seeing a pat-
tern like this in the parameters. (Calling this “scientific knowledge” is a bit excessive,
but you get the idea.) Of course we are sometimes wrong about things like this, so
it is certainly not conclusive. Maybe there really are nine types of days, each with a
Gaussian distribution, and some subtle meteorological reason why their means and
variances should be linked like this. For that matter, maybe our understanding of
meteorology is wrong.

There are two directions to take this: the purely statistical one, and the substan-
tive one.

On the purely statistical side, if all we care about is being able to describe the dis-
tribution of the data and to predict future precipitation, then it doesn’t really matter
whether the nine-component Gaussian mixture is true in any ultimate sense. Cross-
validation picked nine components not because there really are nine types of days, but
because a nine-component model had the best trade-off between approximation bias
and estimation variance. The selected mixture gives a pretty good account of itself,
nearly the same as the kernel density estimate (Figure 19.9). It requires 26 parame-
ters10, which may seem like a lot, but the kernel density estimate requires keeping
around all 6920 data points plus a bandwidth. On sheer economy, the mixture then
has a lot to recommend it.

On the substantive side, there are various things we could do to check the idea
that wet days really do divide into nine types. These are going to be informed by our
background knowledge about the weather. One of the things we know, for example,
is that weather patterns more or less repeat in an annual cycle, and that different types
of weather are more common in some parts of the year than in others. If, for example,
we consistently find type 6 days in August, that suggests that is at least compatible
with these being real, meteorological patterns, and not just approximation artifacts.

Let’s try to look into this visually. snoq.k9$posterior is a 6920⇥9 array which
gives the probability for each day to belong to each class. I’ll boil this down to assign-
ing each day to its most probable class:

day.classes <- apply(snoq.k9$posterior,1,which.max)

We can’t just plot this and hope to see any useful patterns, because we want to see
stuff recurring every year, and we’ve stripped out the dry days, the division into
years, the padding to handle leap-days, etc. Fortunately, snoqualmie has all that, so
we’ll make a copy of that and edit day.classes into it.

10A mean and a standard deviation for each of nine components (=18 parameters), plus mixing weights
(nine of them, but they have to add up to one).
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plot(0,xlim=range(snoq.k9$mu),ylim=range(snoq.k9$sigma),type="n",
xlab="Component mean", ylab="Component standard deviation")

points(x=snoq.k9$mu,y=snoq.k9$sigma,pch=as.character(1:9),
cex=sqrt(0.5+5*snoq.k9$lambda))

Figure 19.8: Characteristics of the components of the 9-mode Gaussian mixture. The
horizontal axis gives the component mean, the vertical axis its standard deviation.
The area of the number representing each component is proportional to the compo-
nent’s mixing weight.
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plot(density(snoq),lty=2,ylim=c(0,0.04),
main=paste("Comparison of density estimates\n",

"Kernel vs. Gaussian mixture"),
xlab="Precipitation (1/100 inch)")

curve(dnormalmix(x,snoq.k9),add=TRUE)

Figure 19.9: Dashed line: kernel density estimate. Solid line: the nine-Gaussian mix-
ture. Notice that the mixture, unlike the KDE, gives negligible probability to nega-
tive precipitation.
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snoqualmie.classes <- snoqualmie
wet.days <- (snoqualmie > 0) & !(is.na(snoqualmie))
snoqualmie.classes[wet.days] <- day.classes

(Note that wet.days is a 36⇥ 366 logical array.) Now, it’s somewhat inconvenient
that the index numbers of the components do not perfectly correspond to the mean
amount of precipitation — class 9 really is more similar to class 6 than to class 8. (See
Figure 19.8.) Let’s try replacing the numerical labels in snoqualmie.classes by
those means.

snoqualmie.classes[wet.days] <- snoq.k9$mu[day.classes]

This leaves alone dry days (still zero) and NA days (still NA). Now we can plot
(Figure 19.10).

The result is discouraging if we want to read any deeper meaning into the classes.
The class with the heaviest amounts of precipitation is most common in the winter,
but so is the classes with the second-heaviest amount of precipitation, the etc. It looks
like the weather changes smoothly, rather than really having discrete classes. In this
case, the mixture model seems to be merely a predictive device, and not a revelation
of hidden structure.11

11A a distribution called a “type II generalized Pareto”, where p(x)/ (1+ x/�)�✓�1, provides a decent
fit here. (See Shalizi 2007; Arnold 1983 on this distribution and its estimation.) With only two param-
eters, rather than 26, its log-likelihood is only 1% higher than that of the nine-component mixture, and
it is almost but not quite as calibrated. One origin of the type II Pareto is as a mixture of exponentials
(Maguire et al., 1952). If X |Z ⇠ Exp(�/Z), and Z itself has a Gamma distribution, Z ⇠ �(✓, 1), then the
unconditional distribution of X is type II Pareto with scale � and shape ✓. We might therefore investigate
fitting a finite mixture of exponentials, rather than of Gaussians, for the Snoqualmie Falls data. We might
of course still end up concluding that there is a continuum of different sorts of days, rather than a finite
set of discrete types.
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plot(0,xlim=c(1,366),ylim=range(snoq.k9$mu),type="n",xaxt="n",
xlab="Day of year",ylab="Expected precipiation (1/100 inch)")

axis(1,at=1+(0:11)*30)
for (year in 1:nrow(snoqualmie.classes)) {

points(1:366,snoqualmie.classes[year,],pch=16,cex=0.2)
}

Figure 19.10: Plot of days classified according to the nine-component mixture. Hori-
zontal axis: day of the year, numbered from 1 to 366 (to handle leap-years). Vertical
axis: expected amount of precipitation on that day, according to the most probable
class for the day.
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19.4.6 Hypothesis Testing for Mixture-Model Selection
An alternative to using cross-validation to select the number of mixtures is to use
hypothesis testing. The k-component Gaussian mixture model is nested within the
(k + 1)-component model, so the latter must have a strictly higher likelihood on the
training data. If the data really comes from a k-component mixture (the null hypoth-
esis), then this extra increment of likelihood will follow one distribution, but if the
data come from a larger model (the alternative), the distribution will be different, and
stochastically larger.

Based on general likelihood theory, we might expect that the null distribution is,
for large sample sizes,

2(log Lk+1� log Lk )⇠ � 2
d i m(k+1)�d i m(k) (19.29)

where Lk is the likelihood under the k-component mixture model, and d i m(k) is the
number of parameters in that model. (See Appendix C.) There are however several
reasons to distrust such an approximation, including the fact that we are approxi-
mating the likelihood through the EM algorithm. We can instead just find the null
distribution by simulating from the smaller model, which is to say we can do a para-
metric bootstrap.

While it is not too hard to program this by hand (Exercise 4), the mixtools pack-
age contains a function to do this for us, called boot.comp, for “bootstrap compari-
son”. Let’s try it out12.

# See footnote regarding this next command
source("http://www.stat.cmu.edu/~cshalizi/402/lectures/20-mixture-examples/bootcomp.R")
snoq.boot <- boot.comp(snoq,max.comp=10,mix.type="normalmix",

maxit=400,epsilon=1e-2)

This tells boot.comp() to consider mixtures of up to 10 components (just as
we did with cross-validation), increasing the size of the mixture it uses when the
difference between k and k + 1 is significant. (The default is “significant at the 5%
level”, as assessed by 100 bootstrap replicates, but that’s controllable.) The command
also tells it what kind of mixture to use, and passes along control settings to the EM
algorithm which does the fitting. Each individual fit is fairly time-consuming, and
we are requiring 100 at each value of k. This took about five minutes to run on my
laptop.

This selected three components (rather than nine), and accompanied this deci-
sion with a rather nice trio of histograms explaining why (Figure 19.11). Remember
that boot.comp() stops expanding the model when there’s even a 5% chance of that
the apparent improvement could be due to mere over-fitting. This is actually pretty
conservative, and so ends up with rather fewer components than cross-validation.

Let’s explore the output of boot.comp(), conveniently stored in the object snoq.boot.
12As of this writing (5 April 2011), there is a subtle, only-sporadically-appearing bug in the version of

this function which is part of the released package. The bootcomp.R file on the class website contains
a fix, kindly provided by Dr. Derek Young, and should be sourced after loading the package, as in the
code example following. Dr. Young informs me that the fix will be incorporated in the next release of the
mixtools package, scheduled for later this month.
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Figure 19.11: Histograms produced by boot.comp(). The vertical red lines mark the
observed difference in log-likelihoods.
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> str(snoq.boot)
List of 3
$ p.values : num [1:3] 0 0.01 0.05
$ log.lik :List of 3
..$ : num [1:100] 5.889 1.682 9.174 0.934 4.682 ...
..$ : num [1:100] 2.434 0.813 3.745 6.043 1.208 ...
..$ : num [1:100] 0.693 1.418 2.372 1.668 4.084 ...

$ obs.log.lik: num [1:3] 5096 2354 920

This tells us that snoq.boot is a list with three elements, called p.values, log.lik
and obs.log.lik, and tells us a bit about each of them. p.values contains the
p-values for testing H1 (one component) against H2 (two components), testing H2
against H3, and H3 against H4. Since we set a threshold p-value of 0.05, it stopped
at the last test, accepting H3. (Under these circumstances, if the difference between
k = 3 and k = 4 was really important to us, it would probably be wise to increase
the number of bootstrap replicates, to get more accurate p-values.) log.lik is itself
a list containing the bootstrapped log-likelihood ratios for the three hypothesis tests;
obs.log.lik is the vector of corresponding observed values of the test statistic.

Looking back to Figure 19.5, there is indeed a dramatic improvement in the gen-
eralization ability of the model going from one component to two, and from two to
three, and diminishing returns to complexity thereafter. Stopping at k = 3 produces
pretty reasonable results, though repeating the exercise of Figure 19.10 is no more
encouraging for the reality of the latent classes.
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19.5 Exercises
To think through, not to hand in.

1. Write a function to simulate from a Gaussian mixture model. Check that it
works by comparing a density estimated on its output to the theoretical den-
sity.

2. Work through the E- step and M- step for a mixture of two Poisson distribu-
tions.

3. Code up the EM algorithm for a mixture of K Gaussians. Simulate data from
K = 3 Gaussians. How well does your code assign data-points to components
if you give it the actual Gaussian parameters as your initial guess? If you give it
other initial parameters?

4. Write a function to find the distribution of the log-likelihood ratio for testing
the hypothesis that the mixture has k Gaussian components against the alter-
native that it has k+1, by simulating from the k-component model. Compare
the output to the boot.comp function in mixtools.

5. Write a function to fit a mixture of exponential distributions using the EM
algorithm. Does it do any better at discovering sensible structure in the Sno-
qualmie Falls data?

6. Explain how to use relative distribution plots to check calibration, along the
lines of Figure 19.4.3.
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